skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sequence-to-Segments Networks for Detecting Segments in Videos
Award ID(s):
1763981
PAR ID:
10228644
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
Volume:
43
Issue:
3
ISSN:
0162-8828
Page Range / eLocation ID:
1009 to 1021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)
    Given a set P of n points and a set S of n segments in the plane, we consider the problem of computing for each segment of S its closest point in P. The previously best algorithm solves the problem in n^{4/3}2^{O(log^*n)} time [Bespamyatnikh, 2003] and a lower bound (under a somewhat restricted model) Ω(n^{4/3}) has also been proved. In this paper, we present an O(n^{4/3}) time algorithm and thus solve the problem optimally (under the restricted model). In addition, we also present data structures for solving the online version of the problem, i.e., given a query segment (or a line as a special case), find its closest point in P. Our new results improve the previous work. 
    more » « less
  3. ABSTRACT Oceanic transform faults are a significant component of the global plate boundary system and are well known for generating fewer and smaller earthquakes than expected. Detailed studies at a handful of sites support the hypothesis that an abundance of creeping segments is responsible for most of the observed deficiency of earthquakes on those faults. We test this hypothesis on a global scale. We relocate Mw ≥5 earthquakes on 138 oceanic transform faults around the world and identify creeping segments on these faults. We demonstrate that creeping segments occur on almost all oceanic transform faults, which could explain their deficiency of earthquakes. We also find that most of the creeping segments are not associated with any large-scale geological structure such as a fault step-over, indicating that along-strike variation of fault zone properties may be the main reason for their existence. 
    more » « less