skip to main content


Title: Soil microbes weaken the positive effect of an aquatic–terrestrial subsidy on plant performance
Abstract Aims Linkages formed through aquatic–terrestrial subsidies can play an important role in structuring communities and mediating ecosystem functions. Aquatic–terrestrial subsidies may be especially important in nutrient-poor ecosystems, such as the freshwater sand dunes surrounding Lake Michigan. Adult midges emerge from Lake Michigan in the spring, swarm to mate and die. Their carcasses form mounds at the base of plants, where they may increase plant productivity through their nutrient inputs. However, the effect of aquatic–terrestrial subsidies on plant productivity could depend on other biotic interactions. In particular, soil microbes might play a key role in facilitating the conversion of nutrients to plant-available forms or competing for the nutrients with plants. Methods In a greenhouse experiment, we tested how carcasses from lake emergent midges (Chironomidae) and soil microbes independently and interactively influenced the performance of a common dune grass, Calamovilfa longifolia. To determine whether midges influenced abiotic soil properties, we measured how midge additions influenced soil nutrients and soil moisture. Important Findings Midges greatly increased plant biomass, while soil microbes influenced the magnitude of this effect. In the absence of soil microbes plant biomass was seven times greater with midges than without midges. However, in the presence of soil microbes, plant biomass was only three times greater. The effect of midges might be driven by their nutrient inputs into the soil, as midges contained 100 times more N, 10 times more P and 150 times more K than dune soils did. Our results suggest that soil microbes may be competing with plants for these nutrients. In sum, we found that midges can be an important aquatic–terrestrial subsidy that produces strong, positive effects on plant productivity along the shorelines of Lake Michigan, but that the impact of aquatic–terrestrial subsidies must be considered within the context of the complex interactions that take place within ecological communities.  more » « less
Award ID(s):
1754287
NSF-PAR ID:
10228761
Author(s) / Creator(s):
; ;
Editor(s):
Hu, Shuijin
Date Published:
Journal Name:
Journal of Plant Ecology
Volume:
14
Issue:
1
ISSN:
1752-993X
Page Range / eLocation ID:
108 to 116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecosystem responses to external inputs of nutrients and organisms are highly variable. Theory predicts that ecosystem traits will determine the responses to spatial subsidies, but evidence for how vegetation structure can modulate those effects is lacking. We investigated how vegetation structure (i.e., leaf area index [LAI] and vegetation height) influenced the ecosystem and community responses to insect spatial subsidies in a subarctic grassland. Our experiment consisted of a 2 × 2 manipulation where in one treatment we either blocked flying insects over a 2‐yr period in 1‐m2plots near the shore of Lake Mývatn, Iceland, where deposition of aquatic adult midges (Diptera: Chironomidae) to land is high, or left control plots accessible to flying midges. In the second treatment, grassland vegetation was cut (tall vs. short) at the start of each season and then allowed to regrow. We then measured litter decomposition and arthropod composition and density within each plot (n = 6 replicates × 4 treatments). Midge‐exclusion cages reduced midge deposition by 81% relative to the open plots. Vegetation cutting initially reduced LAI and vegetation height by 3× and 1.5×, respectively, but these were not different by the end of the second‐growing season. We found that vegetation structure modulated the effects of midge subsides on litter decomposition, with taller canopies intercepting more insect subsidies than shorter ones, leading to 18% faster litter decomposition. In contrast, the short‐vegetation plots intercepted fewer subsidies and had higher temperatures and sunlight, resulting in no effects of midges on decomposition. However, by the end of the experiment when all vegetation structure characteristics had converged across all plots, we found no differences in decomposition between treatments. The effects of midge subsidies on arthropod composition depended on the vegetation structure, suggesting that arthropods might also be responding to the structural effects on spatial subsidies. Our findings indicate that vegetation structure can modify the abiotic environment and the quantity of subsidies entering a recipient ecosystem as aerial insects, resulting in ecosystem‐ and community‐level responses. Thus, changing vegetation structure via habitat disturbances will likely have important implications for ecosystem functions that rely on spatial subsidies.

     
    more » « less
  2. ABSTRACT

    Sandy beaches are iconic interfaces that functionally link the ocean with the landviathe flow of organic matter from the sea. These cross‐ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy‐beach ecosystems (sandy beaches and adjacent surf zones), which typically have littlein situprimary production. We also examine the spatial scaling of the influence of these processes across the broader land‐ and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy‐beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach‐cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi‐aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach‐cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy‐beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow‐on effects for food webs and biodiversity. Similarly, future sea‐level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi‐faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach‐cast organic matter on innumerable ocean shores worldwide.

     
    more » « less
  3. Abstract

    The roles mobile animals and abiotic processes play as vectors for resource transfers between ecosystems (“subsidies”) are well studied, but the idea that resources from animals with limited mobility may be transported across boundaries through intermediate taxa remains unexplored. Aquatic plants (“macrophytes”) are globally distributed and may mediate transfers of aquatic‐derived nutrients from aggregations of aquatic animals to terrestrial ecosystems when consumed by terrestrial herbivores. We used mesocosms (94 × 44 cm) to test whether aquatic animal‐generated biogeochemical hotspots increase growth and nutrient content in macrophytes using the macrophyteJusticia americanaand freshwater mussels.Justicia americanabiomass production increased and belowground biomass allocation changed with increasing mussel density. At high mussel density, water‐column phosphorus increased and carbon:phosphorus ratios inJ. americanatissues decreased. We deployed motion‐sensing cameras to explore herbivory onJ. americanagrowing along the margins of the Kiamichi River, Oklahoma, and documented feeding by large mammals (Odocoileus virginianus,Sus scrofa, andBos taurus). Thus, biogeochemical hotspots generated by aquatic animal aggregations can promote macrophyte production that subsequently is transferred to terrestrial animals. More broadly, this suggests that reductions in aquatic animal biomass may have bottom‐up impacts that indirectly affect terrestrial ecosystems via plant–animal interactions bridging ecosystem boundaries.

     
    more » « less
  4. Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks. 
    more » « less
  5. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial N export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018) 
    more » « less