skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test
The first test explosion of a nuclear bomb, the Trinity test of 16 July 1945, resulted in the fusion of surrounding sand, the test tower, and copper transmission lines into a glassy material known as “trinitite.” Here, we report the discovery, in a sample of red trinitite, of a hitherto unknown composition of icosahedral quasicrystal, Si61Cu30Ca7Fe2. It represents the oldest extant anthropogenic quasicrystal currently known, with the distinctive property that its precise time of creation is indelibly etched in history. Like the naturally formed quasicrystals found in the Khatyrka meteorite and experimental shock syntheses of quasicrystals, the anthropogenic quasicrystals in red trinitite demonstrate that transient extreme pressure–temperature conditions are suitable for the synthesis of quasicrystals and for the discovery of new quasicrystal-forming systems.  more » « less
Award ID(s):
1725349
PAR ID:
10228915
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
22
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2101350118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Quasicrystals have been discovered in a variety of materials ranging from metals to polymers. Yet, why and how they form is incompletely understood. In situ transmission electron microscopy of alloy quasicrystal formation in metals suggests an error-and-repair mechanism, whereby quasiperiodic crystals grow imperfectly with phason strain present, and only perfect themselves later into a high-quality quasicrystal with negligible phason strain. The growth mechanism has not been investigated for other types of quasicrystals, such as dendrimeric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals typically result from entropic, rather than energetic, interactions, and are not usually grown (either in laboratories or in silico ) into large-volume quasicrystals. Consequently, it is unknown whether soft-matter quasicrystals form with the high degree of structural quality found in metal alloy quasicrystals. Here, we investigate the entropically driven growth of colloidal dodecagonal quasicrystals (DQCs) via computer simulation of systems of hard tetrahedra, which are simple models for anisotropic colloidal particles that form a quasicrystal. Using a pattern recognition algorithm applied to particle trajectories during DQC growth, we analyze phason strain to follow the evolution of quasiperiodic order. As in alloys, we observe high structural quality; DQCs with low phason strain crystallize directly from the melt and only require minimal further reduction of phason strain. We also observe transformation from a denser approximant to the DQC via continuous phason strain relaxation. Our results demonstrate that soft-matter quasicrystals dominated by entropy can be thermodynamically stable and grown with high structural quality––just like their alloy quasicrystal counterparts. 
    more » « less
  2. We report the discovery of a dodecagonal quasicrystal Mn 72.3 Si 15.6 Cr 9.7 Al 1.8 Ni 0.6 —composed of a periodic stacking of atomic planes with quasiperiodic translational order and 12-fold symmetry along the two directions perpendicular to the planes—accidentally formed by an electrical discharge event in an eolian dune in the Sand Hills near Hyannis, Nebraska, United States. The quasicrystal, coexisting with a cubic crystalline phase with composition Mn 68.9 Si 19.9 Ni 7.6 Cr 2.2 Al 1.4 , was found in a fulgurite consisting predominantly of fused and melted sand along with traces of melted conductor metal from a nearby downed power line. The fulgurite may have been created by a lightning strike that combined sand with material from downed power line or from electrical discharges from the downed power line alone. Extreme temperatures of at least 1,710 °C were reached, as indicated by the presence of SiO 2 glass in the sample. The dodecagonal quasicrystal is an example of a quasicrystal of any kind formed by electrical discharge, suggesting other places to search for quasicrystals on Earth or in space and for synthesizing them in the laboratory. 
    more » « less
  3. Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al 62 Cu 31 Fe 7 , referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al 61.5 Cu 30.3 Fe 6.8 Cr 1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al 2 Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al 68.6 Fe 14.5 Cu 11.2 Cr 4 Ni 1.8 ), together with stolperite and hollisterite (λ, Al 13 Fe 4 ), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al 63 Cu 24 Fe 13 ) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals. 
    more » « less
  4. Quasicrystals are characterized by atomic arrangements possessing long-range order without periodicity. Van der Waals (vdW) bilayers provide a unique opportunity to controllably vary atomic alignment between two layers from a periodic moir´e crystal to an aperiodic quasicrystal. Here, we reveal a remarkable consequence of the unique atomic arrangement in a dodecagonal WSe2 quasicrystal: the K and Q valleys in separate layers are brought arbitrarily close in momentum space via higher-order Umklapp scatterings. A modest perpendicular electric field is sufficient to induce strong interlayer K − Q hybridization, manifested as a new hybrid excitonic doublet. Concurrently, we observe the disappearance of the trion resonance and attribute it to quasicrystal potential driven localization. Our findings highlight the remarkable attribute of incommensurate systems to bring any pair of momenta into close proximity, thereby introducing a novel aspect to valley engineering. 
    more » « less
  5. Abstract The search for new strategies for large‐scale, self‐assembled arrays of soft objects is key for many applications in photonics and bottom‐up manufacturing. This work shows how liquid crystal topological defects can be assembled in controlled, aperiodic arrays. In particular, the focus is on two typical examples: quasicrystals and moiré patterns. Thanks to a combination of topographical cues, specifically a micropillar array and electrical switching, defects can be assembled in a quasicrystal structure, as seen from polarized optical microscopy and from diffraction patterns. In this setting, the liquid crystal defects assemble in multiple patterns that can be switched by tuning the applied electric field and retain the quasicrystalline symmetry. Using topographic cues, it is also possible to induce moiré patterns of defects, characterized by a long wavelength superimposed on the periodic structures over a short scale. Even when the defect density increases and the short‐scale periodicity is lost, the long‐scale one remains. This work shows how versatile the combination of topographic confinement and electro‐optic effect is, giving access to patterns that are otherwise difficult to realize. 
    more » « less