skip to main content

Title: Cortical and subcortical signatures of conscious object recognition
Abstract

The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition.

Authors:
; ; ;
Award ID(s):
1753218
Publication Date:
NSF-PAR ID:
10229066
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flipping through social media feeds, viewing exhibitions in a museum, or walking through the botanical gardens, people consistently choose to engage with and disengage from visual content. Yet, in most laboratory settings, the visual stimuli, their presentation duration, and the task at hand are all controlled by the researcher. Such settings largely overlook the spontaneous nature of human visual experience, in which perception takes place independently from specific task constraints and its time course is determined by the observer as a self-governing agent. Currently, much remains unknown about how spontaneous perceptual experiences unfold in the brain. Are all perceptual categories extracted during spontaneous perception? Does spontaneous perception inherently involve volition? Is spontaneous perception segmented into discrete episodes? How do different neural networks interact over time during spontaneous perception? These questions are imperative to understand our conscious visual experience in daily life. In this article we propose a framework for spontaneous perception. We first define spontaneous perception as a task-free and self-paced experience. We propose that spontaneous perception is guided by four organizing principles that grant it temporal and spatial structures. These principles include coarse-to-fine processing, continuity and segmentation, agency and volition, and associative processing. We provide key suggestions illustratingmore »how these principles may interact with one another in guiding the multifaceted experience of spontaneous perception. We point to testable predictions derived from this framework, including (but not limited to) the roles of the default-mode network and slow cortical potentials in underlying spontaneous perception. We conclude by suggesting several outstanding questions for future research, extending the relevance of this framework to consciousness and spontaneous brain activity. In conclusion, the spontaneous perception framework proposed herein integrates components in human perception and cognition, which have been traditionally studied in isolation, and opens the door to understand how visual perception unfolds in its most natural context.« less
  2. During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.
  3. Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.

  4. Abstract

    Research at the intersection of computer vision and neuroscience has revealed hierarchical correspondence between layers of deep convolutional neural networks (DCNNs) and cascade of regions along human ventral visual cortex. Recently, studies have uncovered emergence of human interpretable concepts within DCNNs layers trained to identify visual objects and scenes. Here, we asked whether an artificial neural network (with convolutional structure) trained for visual categorization would demonstrate spatial correspondences with human brain regions showing central/peripheral biases. Using representational similarity analysis, we compared activations of convolutional layers of a DCNN trained for object and scene categorization with neural representations in human brain visual regions. Results reveal a brain-like topographical organization in the layers of the DCNN, such that activations of layer-units with central-bias were associated with brain regions with foveal tendencies (e.g. fusiform gyrus), and activations of layer-units with selectivity for image backgrounds were associated with cortical regions showing peripheral preference (e.g. parahippocampal cortex). The emergence of a categorical topographical correspondence between DCNNs and brain regions suggests these models are a good approximation of the perceptual representation generated by biological neural networks.

  5. The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brainmore »networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala–cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.

    « less