skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constrained Retrospective Search
The search for good outcomes–be it government policies, technological breakthroughs, or lasting purchases–takes time and effort. At times, the decision process is unconstrained: an individual seeking a well-priced product determines her search scope and time as she wishes. At times, search is constrained, either through institutions or cognitive limitations. We consider retrospective search in both settings: an agent chooses the search scope and time, selecting the best observed outcome upon stopping. We analyze the impacts of constraints when observed samples are independent and correlated over time.  more » « less
Award ID(s):
1949381
PAR ID:
10229182
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AEA Papers and Proceedings
Volume:
111
ISSN:
2574-0768
Page Range / eLocation ID:
549 to 553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A search trail is an interactive visualization of how a previous searcher approached a related task. Using search trails to assist users requires understanding aspects of the task, user, and trails. In this paper, we examine two questions. First, what are task characteristics that influence a user's ability to gain benefits from others' trails? Second, what is the impact of a "mismatch" between a current user's task and previous user's task which originated the trail? We report on a study that investigated the influence of two factors on participants' perceptions and behaviors while using search trails to complete tasks. Our first factor, task scope, focused on the scope of the task assigned to the participant (broad to narrow). Our manipulation of this factor involved varying the number of constraints associated with tasks. Our second factor, trail scope, focused on the scope of the task that originated the search trails given to participants. We investigated how task scope and trail scope affected participants' (RQ1) pre-task perceptions, (RQ2) post-task perceptions, and (RQ3) search behaviors. We discuss implications of our results for systems that use search trails to provide assistance. 
    more » « less
  2. The lymphatic system is a networked structure used by billions of immune cells, including T cells and Dendritic cells, to locate and identify invading pathogens. Dendritic cells carry pieces of pathogens to the nearest lymph node, and T cells travel through the lymphatic vessels and search within lymph nodes to find them. Here we investigate how the topology of the lymphatic network affects the time for this search to be completed. Building on prior work that maps out the human lymphatic network, we develop and extend a method to infer the lymphatic network topology of mice. We compare search times for the modeled and observed topologies and show that they are similar to each other and consistent with observed immune response times. This is relevant for translating immune response times in mice, where most experimental work occurs, into expected immune response times in humans. Our analysis predicts that for large systemic infections, the topology of the lymphatic network allows immune response times to remain fast even as animal mass increases by orders of magnitude. This work advances our understanding of how the structure of the lymphatic network supports the swarm intelligence of the immune system. It also elucidates general principles relating swarm size and organization to search speed. 
    more » « less
  3. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
  4. Abstract We present the discovery of a second radio flare from the tidal disruption event (TDE) AT2020vwl via long-term monitoring radio observations. Late-time radio flares from TDEs are being discovered more commonly, with many TDEs showing radio emission thousands of days after the stellar disruption, but the mechanism that powers these late-time flares is uncertain. Here, we present radio spectral observations of the first and second radio flares observed from the TDE AT2020vwl. Through detailed radio spectral monitoring, we find evidence for two distinct outflow ejection episodes or a period of renewed energy injection into the preexisting outflow. We deduce that the second radio flare is powered by an outflow that is initially slower than the first flare but carries more energy and shows tentative indication of accelerating over time. Through modelling the long-term optical and UV emission from the TDE as arising from an accretion disk, we infer that the second radio outflow launch or energy injection episode occurred approximately at the time of the peak accretion rate. The fast decay of the second flare precludes environmental changes as an explanation, while the velocity of the outflow is at all times too low to be explained by an off-axis relativistic jet. Future observations that search for any link between the accretion disk properties and late-time radio flares from TDEs will aid understanding of what powers the radio outflows in TDEs and confirm if multiple outflow ejections or energy injection episodes are common. 
    more » « less
  5. A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton– proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of √ s = 13 TeV and recorded by the ATLAS detector corresponds to an integrated luminosity of 139 fb−1. Flavourtagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW,WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the (W/Z)Z(→ c ¯ c) process and 3.8 (4.6) standard deviations for the (W/Z)W(→ cq) process. The (W/Z)H(→ c ¯ c) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model crosssection times branching fraction for a Higgs boson with a mass of 125 GeV, corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier |κc| < 8.5 (12.4), at the 95% confidence level. A combination with theATLAS(W/Z)H, H → b¯b analysis is performed, allowing the ratio κc/κb to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level. 
    more » « less