skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-dimensional movements of the pectoral fin during yaw turns in the Pacific spiny dogfish, Squalus suckleyi
Fish pectoral fins move in complex ways, acting as control surfaces to affect force balance during swimming and maneuvering. Though objectively less dynamic than their actinopterygian relatives, shark pectoral fins undergo complex conformational changes and movements during maneuvering. Asynchronous pectoral fin movement is documented during yaw turning in at least two shark species but the three-dimensional (3D) rotation of the fin about the body axes is unknown. We quantify the 3D actuation of the pectoral fin base relative to the body axes. We hypothesized that Pacific spiny dogfish rotate pectoral fins with three degrees of freedom relative to the body during volitional turning. The pectoral fin on the inside of the turn is consistently protracted, supinated, and depressed. Additionally, turning angular velocity increased with increasing fin rotation. Estimated drag on the fin increased and the shark decelerated during turning. Based on these findings, we propose that Pacific spiny dogfish uses drag-based turning during volitional swimming. Post-mortem muscle stimulation revealed depression, protraction, and supination of the pectoral fin through stimulation of the ventral and cranial pterygoideus muscles. These data confirm functional hypotheses about pectoral fin musculature and suggest that Pacific spiny dogfish actively rotate pectoral fins to facilitate drag-based turning.  more » « less
Award ID(s):
1661129
PAR ID:
10229260
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Biology Open
ISSN:
2046-6390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems. 
    more » « less
  2. Locomotion dominates animal energy budgets, and selection should favour behaviours that minimize transportation costs. Recent fieldwork has altered our understanding of the preferred modes of locomotion in fishes. For instance, bluegill employ a sustainable intermittent swimming form with 2–3 tail beats alternating with short glides. Volitional swimming studies in the laboratory with bluegill suggest that the propulsive phase reflects a fixed-gear constraint on body–caudal-fin activity. Largemouth bass ( Micropterus salmoides ) also reportedly display intermittent swimming in the field. We examined swimming by bass in a static tank to quantify the parameters of volitional locomotion, including tailbeat frequency and glide duration, across a range of swimming speeds. We found that tailbeat frequency was not related to speed at low swimming speeds. Instead, speed was a function of glide duration between propulsive events, with glide duration decreasing as speed increased. The propulsive Strouhal number remained within the range that maximizes propulsive efficiency. We used muscle mechanics experiments to simulate power production by muscle operating under intermittent versus steady conditions. Workloop data suggest that intermittent activity allows fish to swim efficiently and avoid the drag-induced greater energetic cost of continuous swimming. The results offer support for a new perspective on fish locomotion: intermittent swimming is crucial to aerobic swimming energetics. 
    more » « less
  3. Abstract In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (μBots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aμBot equipped with each caudal fin (andμBot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofμBot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10−4Pa m4(∼10.6 Hz) and stiffness >10−4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10−4Pa m4, with theμBot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theμBots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inμBot swimming. 
    more » « less
  4. Thresher sharks (Alopiasspp.) are characterized by an elongated, scythe-like caudal fin that is used in tail-whipping, a behaviour where the tail is thrown overhead to stun prey. Tail-whipping is performed via extreme dorsoventral bending of the vertebral column, and is dramatically different from lateral oscillatory motion used for swimming. Previous work has examined thresher shark vertebral morphology and mechanical properties, but in the context of swimming loads. Our goal was to assess centra morphometrics and microarchitecture for variations that may support extreme dorsoventral bending. We examined anterior and posterior body vertebrae from an embryo, five juvenile, and four adult thresher sharks using micro-computed tomography. We used principal component and landmark analyses to examine variables influencing vertebral morphology and mineral arrangement, respectively. We found that morphology and microstructure significantly varied across body regions and ontogeny. We hypothesize that anterior body vertebrae increase stability, while posterior body vertebrae support the caudal fin. Vertebral size and quantity of mineral structures (lamellae and nodes) increased across ontogeny, suggesting vertebrae adapt over development to support a larger body and tail. Based on our results, we hypothesize that thresher shark vertebrae vary in morphometrics and mineralization (amount and arrangement) supporting the mechanical needs for tail-whipping. 
    more » « less
  5. Abstract Flying fishes (family Exocoetidae) are known for achieving multi-modal locomotion through air and water. Previous work on understanding this animal’s aerodynamic and hydrodynamic nature has been based on observations, numerical simulations, or experiments on preserved dead fish, and has focused primarily on flying pectoral fins. The first half of this paper details the design and validation of a modular flying fish inspired robotic model organism (RMO). The second half delves into a parametric aerodynamic study of flying fish pelvic fins, which to date have not been studied in-depth. Using wind tunnel experiments at a Reynolds number of 30,000, we investigated the effect of the pelvic fin geometric parameters on aerodynamic efficiency and longitudinal stability. The pelvic fin parameters investigated in this study include the pelvic fin pitch angle and its location along the body. Results show that the aerodynamic efficiency is maximized for pelvic fins located directly behind the pectoral fins and is higher for more positive pitch angles. In contrast, pitching stability is neither achievable for positive pitching angles nor pelvic fins located directly below the pectoral fin. Thus, there is a clear a trade-off between stability and lift generation, and an optimal pelvic fin configuration depends on the flying fish locomotion stage, be it gliding, taxiing, or taking off. The results garnered from the RMO experiments are insightful for understanding the physics principles governing flying fish locomotion and designing flying fish inspired aerial-aquatic vehicles. 
    more » « less