skip to main content


Title: Controlled ring-opening polymerization of N -(3- tert -butoxy-3-oxopropyl) glycine derived N -carboxyanhydrides towards well-defined peptoid-based polyacids
Polypeptoids bearing carboxylic acid groups on the N -substituent are useful building blocks for the construction of peptidomimetic supramolecular assemblies with stimuli-responsive properties. Towards this end, N -(3- tert -butoxy-3-oxopropyl) glycine derived N -carboxyanhydride ( t BuO 2 Pr-NCA) has been successfully synthesized and polymerized using primary amine initiators to produce the corresponding poly( N -(3- tert -butoxy-3-oxopropyl) glycine) with molecular weights ( M n ) of 5.6–59 kg mol −1 and a narrow molecular weight distribution (PDI = 1.003–1.026). The polymerization was shown to proceed in a controlled manner, evidenced by the good agreement of the experimental molecular weight ( M n ) with theoretical values and narrow molecular weight distribution in a wide range of monomer-to-initiator ratios ([M] 0  : [I] 0 = 25 : 1–200 : 1), the linear increase of M n with conversion and the second-order polymerization kinetics. The cloaked carboxyl groups on the poly( N -(3- tert -butoxy-3-oxopropyl) glycine) can be readily unveiled in mild acidic conditions to yield the poly( N -(2-carboxyethyl) glycine), a structural mimic of poly(glutamic acid). The poly( N -(2-carboxyethyl) glycine) polymer is a weak polyelectrolyte whose hydrodynamic size in water can be controlled by the solution pH.  more » « less
Award ID(s):
2003458
NSF-PAR ID:
10229427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
10
ISSN:
1759-9954
Page Range / eLocation ID:
1540 to 1548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    RecentlyO‐carboxyanhydrides (OCAs) have emerged as a class of viable monomers which can undergo ring‐opening polymerization (ROP) to prepare poly(α‐hydroxyalkanoic acid) with functional groups that are typically difficult to achieve by ROP of lactones. Organocatalysts for the ROP of OCAs, such as dimethylaminopyridine (DMAP), may induce undesired epimerization of the α‐carbon atom in polyesters resulting in the loss of isotacticity. Herein, we report the use of (BDI‐IE)Zn(OCH(CH3)COOCH3) ((BDI)Zn‐1, (BDI‐IE)=2‐((2,6‐diethylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐2‐pentene), for the controlled ROP of various OCAs without epimerization. Both homopolymers and block copolymers with controlled molecular weights, narrow molecular weight distributions, and isotactic backbones can be readily synthesized. (BDI)Zn‐1 also enables controlled copolymerization of OCAs and lactide, facilitating the synthesis of block copolymers potentially useful for various biomedical applications. Preliminary mechanistic studies suggest that the monomer/dimer equilibrium of the zinc catalyst influences the ROP of OCAs, with the monomeric (BDI)Zn‐1 possessing superior catalytic activity for the initiation of ROP in comparison to the dimeric (BDI)Zn complex.

     
    more » « less
  2. We report a green solvent-to-polymer upgrading transformation of chemicals of the lactic acid portfolio into water-soluble lower critical solution temperature (LCST)-type acrylic polymers. Aqueous Cu(0)-mediated living radical polymerization (SET-LRP) was utilized for the rapid synthesis of N -substituted lactamide-type homo and random acrylic copolymers under mild conditions. A particularly unique aspect of this work is that the water-soluble monomers and the SET-LRP initiator used to produce the corresponding polymers were synthesized from biorenewable and non-toxic solvents, namely natural ethyl lactate and BASF's Agnique® AMD 3L ( N , N -dimethyl lactamide, DML). The pre-disproportionation of Cu( i )Br in the presence of tris[2-(dimethylamino)ethyl]amine (Me 6 TREN) in water generated nascent Cu(0) and Cu( ii ) complexes that facilitated the fast polymerization of N -tetrahydrofurfuryl lactamide and N , N -dimethyl lactamide acrylate monomers (THFLA and DMLA, respectively) up to near-quantitative conversion with excellent control over molecular weight (5000 < M n < 83 000) and dispersity (1.05 < Đ < 1.16). Interestingly, poly(THFLA) showed a degree of polymerization and concentration dependent LCST behavior, which can be fine-tuned ( T cp = 12–62 °C) through random copolymerization with the more hydrophilic DMLA monomer. Finally, covalent cross-linking of these polymers resulted in a new family of thermo-responsive hydrogels with excellent biocompatibility and tunable swelling and LCST transition. These illustrate the versatility of these neoteric green polymers in the preparation of smart and biocompatible soft materials. 
    more » « less
  3. Rationale

    Simple, affordable, and rapid methods for identifying the molecular weight (MW) distribution and macromolecular composition of polymeric materials are limited. Current tools require extensive solvent consumption, linear calibrations, and expensive consumables. A simple method for the determination of average MW (Mn,Mw) and chain end groups is demonstrated for synthetic homopolymer standards using direct injection electrospray ionization‐mass spectrometry (ESI‐MS) and an open‐sourced charge deconvolution (CDC) algorithm.

    Methods

    Five homopolymer standards in the 1–7 kDa MW range were analyzed using direct‐injection ESI‐MS on a quadrupole/time‐of‐flight mass spectrometer. The samples investigated, viz. two poly(ethylene oxide) (PEO) and two poly(styrene sulfonic acid) (PSS) standards with narrow polydispersity and one poly(d,l‐alanine) (pAla) standard with undefined polydispersity, were chosen to illustrate challenges with ESI‐MS quantitation. Using the UniDec program, weight average MWs (Mw) obtained from the charge‐deconvoluted spectra were compared to the reportedMwdata of the standards from size exclusion chromatography (SEC) measurements.

    Results

    The MW data derived for the PSS, PEO, and pAla standards agreed well with the corresponding reportedMwor MW range values. The method was able to provide MW, degree of polymerization (DP), and polydispersity index (PDI) information for polymers with narrow (PSS, PEO) as well as broader (pAla) molecular weight distribution; this feature provides an advantage over MW analysis via matrix‐assisted laser desorption/ionization (MALDI) for ESI‐compatible materials. PSS standards differing in average MW by only a few repeat units could be confidently distinguished. Additionally, the oligomeric resolution observed for all samples studied unveiled chain‐end information not available through chromatographic analysis.

    Conclusions

    Overall, the free and easy‐to‐use UniDec CDC algorithm provides a simple, alternative method to measuring MW and DP for polymeric materials without high solvent consumption, expensive ionization sources, or calibration curves. Information about the masses of individual oligomers and the possibility to further characterize these oligomers using tandem mass spectrometry and/or ion mobility techniques constitutes additional benefits of this approach vis‐à‐vis traditional MW and PDI elucidation through SEC.

     
    more » « less
  4. Abstract

    A comparative study involving bimetallic nickel catalysts designed from disubstitutedN,N,N′,N′‐tetra(diphenylphosphanylmethyl)benzene diamine bridging ligands is reported. Catalyst behavior is explored in the Kumada catalyst‐transfer polymerization (KCTP) using poly(3‐hexylthiophene) (P3HT) as the model system. The success of a controlled polymerization is monitored by analyzing monomer conversion, degree of polymerization, end‐group identity, and molecular weight distribution. The characterization of P3HT obtained from KCTP initiated with the bimetallic catalysts shows chain‐growth behavior; however, the presence of Br/Br end‐groups and broader molecular weight distribution reveals a reduced controlled polymerization compared to the commonly employed Ni(dppp)Cl2. The observed increase in intermolecular chain transfer and termination processes in KCTP initiation with the bimetallic catalysts can be attributed to a weaker Ni(0)‐π‐aryl complex interaction, which is caused by increased steric crowding of the coordination sphere.

     
    more » « less
  5. N-Sulfonyl-activated aziridines are known to undergo anionic-ring-opening polymerizations (AROP) to form polysulfonyllaziridines. However, the post-polymerization deprotection of the sulfonyl groups from polysulfonyllaziridines remains challenging. In this report, the polymerization of tert-butyl aziridine-1-carboxylate (BocAz) is reported. BocAz has an electron-withdrawing tert-butyloxycarbonyl (BOC) group on the aziridine nitrogen. The BOC group activates the aziridine for AROP and allows the synthesis of low-molecular-weight poly(BocAz) chains. A 13C NMR spectroscopic analysis of poly(BocAz) suggested that the polymer is linear. The attainable molecular weight of poly(BocAz) is limited by the poor solubility of poly(BocAz) in AROP-compatible solvents. The deprotection of poly(BocAz) using trifluoroacetic acid (TFA) cleanly produces linear polyethyleneimine. Overall, these results suggest that carbonyl groups, such as BOC, can play a larger role in the in the activation of aziridines in anionic polymerization and in the synthesis of polyimines. 
    more » « less