skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlled ring-opening polymerization of N -(3- tert -butoxy-3-oxopropyl) glycine derived N -carboxyanhydrides towards well-defined peptoid-based polyacids
Polypeptoids bearing carboxylic acid groups on the N -substituent are useful building blocks for the construction of peptidomimetic supramolecular assemblies with stimuli-responsive properties. Towards this end, N -(3- tert -butoxy-3-oxopropyl) glycine derived N -carboxyanhydride ( t BuO 2 Pr-NCA) has been successfully synthesized and polymerized using primary amine initiators to produce the corresponding poly( N -(3- tert -butoxy-3-oxopropyl) glycine) with molecular weights ( M n ) of 5.6–59 kg mol −1 and a narrow molecular weight distribution (PDI = 1.003–1.026). The polymerization was shown to proceed in a controlled manner, evidenced by the good agreement of the experimental molecular weight ( M n ) with theoretical values and narrow molecular weight distribution in a wide range of monomer-to-initiator ratios ([M] 0  : [I] 0 = 25 : 1–200 : 1), the linear increase of M n with conversion and the second-order polymerization kinetics. The cloaked carboxyl groups on the poly( N -(3- tert -butoxy-3-oxopropyl) glycine) can be readily unveiled in mild acidic conditions to yield the poly( N -(2-carboxyethyl) glycine), a structural mimic of poly(glutamic acid). The poly( N -(2-carboxyethyl) glycine) polymer is a weak polyelectrolyte whose hydrodynamic size in water can be controlled by the solution pH.  more » « less
Award ID(s):
2003458
PAR ID:
10229427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
10
ISSN:
1759-9954
Page Range / eLocation ID:
1540 to 1548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N-Sulfonyl-activated aziridines are known to undergo anionic-ring-opening polymerizations (AROP) to form polysulfonyllaziridines. However, the post-polymerization deprotection of the sulfonyl groups from polysulfonyllaziridines remains challenging. In this report, the polymerization of tert-butyl aziridine-1-carboxylate (BocAz) is reported. BocAz has an electron-withdrawing tert-butyloxycarbonyl (BOC) group on the aziridine nitrogen. The BOC group activates the aziridine for AROP and allows the synthesis of low-molecular-weight poly(BocAz) chains. A 13C NMR spectroscopic analysis of poly(BocAz) suggested that the polymer is linear. The attainable molecular weight of poly(BocAz) is limited by the poor solubility of poly(BocAz) in AROP-compatible solvents. The deprotection of poly(BocAz) using trifluoroacetic acid (TFA) cleanly produces linear polyethyleneimine. Overall, these results suggest that carbonyl groups, such as BOC, can play a larger role in the in the activation of aziridines in anionic polymerization and in the synthesis of polyimines. 
    more » « less
  2. Abstract A comparative study involving bimetallic nickel catalysts designed from disubstitutedN,N,N′,N′‐tetra(diphenylphosphanylmethyl)benzene diamine bridging ligands is reported. Catalyst behavior is explored in the Kumada catalyst‐transfer polymerization (KCTP) using poly(3‐hexylthiophene) (P3HT) as the model system. The success of a controlled polymerization is monitored by analyzing monomer conversion, degree of polymerization, end‐group identity, and molecular weight distribution. The characterization of P3HT obtained from KCTP initiated with the bimetallic catalysts shows chain‐growth behavior; however, the presence of Br/Br end‐groups and broader molecular weight distribution reveals a reduced controlled polymerization compared to the commonly employed Ni(dppp)Cl2. The observed increase in intermolecular chain transfer and termination processes in KCTP initiation with the bimetallic catalysts can be attributed to a weaker Ni(0)‐π‐aryl complex interaction, which is caused by increased steric crowding of the coordination sphere. 
    more » « less
  3. We report a green solvent-to-polymer upgrading transformation of chemicals of the lactic acid portfolio into water-soluble lower critical solution temperature (LCST)-type acrylic polymers. Aqueous Cu(0)-mediated living radical polymerization (SET-LRP) was utilized for the rapid synthesis of N -substituted lactamide-type homo and random acrylic copolymers under mild conditions. A particularly unique aspect of this work is that the water-soluble monomers and the SET-LRP initiator used to produce the corresponding polymers were synthesized from biorenewable and non-toxic solvents, namely natural ethyl lactate and BASF's Agnique® AMD 3L ( N , N -dimethyl lactamide, DML). The pre-disproportionation of Cu( i )Br in the presence of tris[2-(dimethylamino)ethyl]amine (Me 6 TREN) in water generated nascent Cu(0) and Cu( ii ) complexes that facilitated the fast polymerization of N -tetrahydrofurfuryl lactamide and N , N -dimethyl lactamide acrylate monomers (THFLA and DMLA, respectively) up to near-quantitative conversion with excellent control over molecular weight (5000 < M n < 83 000) and dispersity (1.05 < Đ < 1.16). Interestingly, poly(THFLA) showed a degree of polymerization and concentration dependent LCST behavior, which can be fine-tuned ( T cp = 12–62 °C) through random copolymerization with the more hydrophilic DMLA monomer. Finally, covalent cross-linking of these polymers resulted in a new family of thermo-responsive hydrogels with excellent biocompatibility and tunable swelling and LCST transition. These illustrate the versatility of these neoteric green polymers in the preparation of smart and biocompatible soft materials. 
    more » « less
  4. Abstract Poly(styrene‐co‐N‐maleimide) copolymers bearingtert‐butoxycarbonyl (t‐BOC)‐protected amine groups attached to side chains of varying lengths are synthesized via activators regenerated by electron transfer atom transfer radical polymerization (ARGET‐ATRP) and investigated from the perspective of photoresist applications. The length of the alkyl substituents enables control of thermal properties as well as hydrophobicity, which are critically important for resist processing. Removal of the acid labilet‐BOC group during deep‐UV (DUV)exposure shifts solubility in the exposed areas and well‐defined line space patterns of 1 µm are obtained for the selected copolymers. The correlation between glass transition temperature (Tg) and solubility contrast determines the lithographic performance where the copolymers with shorter alkyl chains exhibit promising results. 
    more » « less
  5. null (Ed.)
    N , N ′-Di- tert -butylcarbodiimide, Me 3 CN=C=NCMe 3 , undergoes reductive cleavage in the presence of the Gd II complex, [K(18-crown-6) 2 ][Gd II (N R 2 ) 3 ] ( R = SiMe 3 ), to form a new type of ligand, the tert -butylcyanamide anion, (Me 3 CNCN) − . This new ligand can bind metals with one or two donor atoms as demonstrated by the isolation of a single crystal containing potassium salts of both end-on and side-on bound tert -butylcyanamide anions, (Me 3 CNCN) − . The crystal contains [K(18-crown-6)(H 2 O)][NCNCMe 3 - kN ], in which one ( t BuNCN) − anion is coordinated end-on to potassium ligated by 18-crown-6 and water, as well as [K(18-crown-6)][η 2 -NCNCMe 3 ], in which an 18-crown-6 potassium is coordinated side-on to the terminal N—C linkage. This single crystal also contains one equivalent of 1,3-di- tert -butyl urea, (C 9 H 20 N 2 O), which is involved in hydrogen bonding that may stabilize the whole assembly, namely, aqua( tert -butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)–( tert -butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)– N , N ′-di- tert -butylcarbodiimide (1/1/1) [K(C 5 H 9 N 2 )(C 12 H 24 O 6 )]·[K(C 5 H 9 N 2 )(C 12 H 24 O 6 )(H 2 O)]·C 9 H 20 N 2 . 
    more » « less