skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Anionic Polymerization of a tert-Butyl-Carboxylate-Activated Aziridine
N-Sulfonyl-activated aziridines are known to undergo anionic-ring-opening polymerizations (AROP) to form polysulfonyllaziridines. However, the post-polymerization deprotection of the sulfonyl groups from polysulfonyllaziridines remains challenging. In this report, the polymerization of tert-butyl aziridine-1-carboxylate (BocAz) is reported. BocAz has an electron-withdrawing tert-butyloxycarbonyl (BOC) group on the aziridine nitrogen. The BOC group activates the aziridine for AROP and allows the synthesis of low-molecular-weight poly(BocAz) chains. A 13C NMR spectroscopic analysis of poly(BocAz) suggested that the polymer is linear. The attainable molecular weight of poly(BocAz) is limited by the poor solubility of poly(BocAz) in AROP-compatible solvents. The deprotection of poly(BocAz) using trifluoroacetic acid (TFA) cleanly produces linear polyethyleneimine. Overall, these results suggest that carbonyl groups, such as BOC, can play a larger role in the in the activation of aziridines in anionic polymerization and in the synthesis of polyimines.  more » « less
Award ID(s):
1919906
PAR ID:
10389871
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymers
Volume:
14
Issue:
16
ISSN:
2073-4360
Page Range / eLocation ID:
3253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Polypeptoids bearing carboxylic acid groups on the N -substituent are useful building blocks for the construction of peptidomimetic supramolecular assemblies with stimuli-responsive properties. Towards this end, N -(3- tert -butoxy-3-oxopropyl) glycine derived N -carboxyanhydride ( t BuO 2 Pr-NCA) has been successfully synthesized and polymerized using primary amine initiators to produce the corresponding poly( N -(3- tert -butoxy-3-oxopropyl) glycine) with molecular weights ( M n ) of 5.6–59 kg mol −1 and a narrow molecular weight distribution (PDI = 1.003–1.026). The polymerization was shown to proceed in a controlled manner, evidenced by the good agreement of the experimental molecular weight ( M n ) with theoretical values and narrow molecular weight distribution in a wide range of monomer-to-initiator ratios ([M] 0  : [I] 0 = 25 : 1–200 : 1), the linear increase of M n with conversion and the second-order polymerization kinetics. The cloaked carboxyl groups on the poly( N -(3- tert -butoxy-3-oxopropyl) glycine) can be readily unveiled in mild acidic conditions to yield the poly( N -(2-carboxyethyl) glycine), a structural mimic of poly(glutamic acid). The poly( N -(2-carboxyethyl) glycine) polymer is a weak polyelectrolyte whose hydrodynamic size in water can be controlled by the solution pH. 
    more » « less
  2. Abstract Linear poly(α‐hydroxy acids) are important degradable polymers, and they can be efficiently prepared by ring‐opening polymerization of O‐carboxyanhydrides with pendant functional groups. However, attempts to prepare cyclic poly(α‐hydroxy acids) have been plagued by side reactions, including epimerization and uncontrolled intramolecular chain transfers or termination, that prevent the synthesis of high‐molecular‐weight stereoregular cyclic polyesters. Herein, we report a scalable method for the synthesis of high‐molecular‐weight (>100 kDa) stereoregular functionalized cyclic poly(α‐hydroxy acids) by means of controlled polymerization of O‐carboxyanhydrides using a catalytic system consisting of a lanthanum complex with a sterically bulky ligand and a manganese silylamide. Additionally, using this system, we could readily prepare cyclic block poly(α‐hydroxy acids) by means of sequential addition of O‐carboxyanhydrides. The obtained cyclic polyesters and their cyclic block copolyesters exhibit distinctive physicochemical properties—including elevated phase transition temperature, improved toughness, and reduced viscosity—compared to their linear counterparts. 
    more » « less
  3. Abstract Poly(styrene‐co‐N‐maleimide) copolymers bearingtert‐butoxycarbonyl (t‐BOC)‐protected amine groups attached to side chains of varying lengths are synthesized via activators regenerated by electron transfer atom transfer radical polymerization (ARGET‐ATRP) and investigated from the perspective of photoresist applications. The length of the alkyl substituents enables control of thermal properties as well as hydrophobicity, which are critically important for resist processing. Removal of the acid labilet‐BOC group during deep‐UV (DUV)exposure shifts solubility in the exposed areas and well‐defined line space patterns of 1 µm are obtained for the selected copolymers. The correlation between glass transition temperature (Tg) and solubility contrast determines the lithographic performance where the copolymers with shorter alkyl chains exhibit promising results. 
    more » « less
  4. Abstract Reversible addition‐fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups ‐ while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra‐high molecular weight polymers, polymerization induced self‐assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non‐toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future. 
    more » « less
  5. Abstract A comparative study involving bimetallic nickel catalysts designed from disubstitutedN,N,N′,N′‐tetra(diphenylphosphanylmethyl)benzene diamine bridging ligands is reported. Catalyst behavior is explored in the Kumada catalyst‐transfer polymerization (KCTP) using poly(3‐hexylthiophene) (P3HT) as the model system. The success of a controlled polymerization is monitored by analyzing monomer conversion, degree of polymerization, end‐group identity, and molecular weight distribution. The characterization of P3HT obtained from KCTP initiated with the bimetallic catalysts shows chain‐growth behavior; however, the presence of Br/Br end‐groups and broader molecular weight distribution reveals a reduced controlled polymerization compared to the commonly employed Ni(dppp)Cl2. The observed increase in intermolecular chain transfer and termination processes in KCTP initiation with the bimetallic catalysts can be attributed to a weaker Ni(0)‐π‐aryl complex interaction, which is caused by increased steric crowding of the coordination sphere. 
    more » « less