High magnetic fields suppress cuprate superconductivity to reveal an unusual density wave (DW) state coexisting with unexplained quantum oscillations. Although routinely labeled a charge density wave (CDW), this DW state could actually be an electron-pair density wave (PDW). To search for evidence of a field-induced PDW, we visualized modulations in the density of electronic states N ( r ) within the halo surrounding Bi 2 Sr 2 CaCu 2 O 8 vortex cores. We detected numerous phenomena predicted for a field-induced PDW, including two sets of particle-hole symmetric N ( r ) modulations with wave vectors Q P and 2 Q P , with the latter decaying twice as rapidly from the core as the former. These data imply that the primary field-induced state in underdoped superconducting cuprates is a PDW, with approximately eight CuO 2 unit-cell periodicity and coexisting with its secondary CDWs.
more »
« less
Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity
The defining characteristic of hole-doped cuprates is d -wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d -symmetry form factor, pair density wave (PDW) state coexisting with d -wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states N r , E is predicted at the terminal BiO surface of Bi 2 Sr 2 CaCu 2 O 8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of N r , E , the modulations of the coherence peak energy Δ p r , and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space q - space . Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi 2 Sr 2 CaCu 2 O 8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p *, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p * ≈ 19% occurs due to disappearance of this PDW.
more »
« less
- Award ID(s):
- 1849751
- PAR ID:
- 10229587
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 26
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 14805 to 14811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electron-density depletion in the CuO 2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) in real-space, and a characteristic quasiparticle scattering interference (QPI) signature $${\Lambda }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{q}}}}}})$$ Λ P ( q ) in wavevector space. By studying strongly underdoped Bi 2 Sr 2 CaDyCu 2 O 8 at hole-density ~0.08 in the superconductive phase, we detect the 8 a 0 -periodic $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature $$\Lambda ({{{{{\boldsymbol{q}}}}}})$$ Λ ( q ) that is predicted specifically for the temperature dependence of an 8 a 0 -periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d -wave superconductivity to a pure PDW state in the Bi 2 Sr 2 CaDyCu 2 O 8 pseudogap phase.more » « less
-
Abstract In high-temperature ( T c ) cuprate superconductors, many exotic phenomena are rooted in the enigmatic pseudogap state, which has been interpreted as consisting of preformed Cooper pairs or competing orders or a combination thereof. Observation of pseudogap phenomenologically in electron-doped Sr 2 IrO 4 —the 5d electron counterpart of the cuprates, has spurred intense interest in the strontium iridates as a testbed for exploring the exotic physics of the cuprates. Here, we examine the pseudogap state of electron-doped Sr 2 IrO 4 by angle-resolved photoemission spectroscopy (ARPES) and parallel theoretical modeling. Our analysis demonstrates that the pseudogap state of Sr 2 IrO 4 appears without breaking the particle–hole symmetry or inducing spectral broadening which are telltale signatures of competing orders in the cuprates. We find quasiparticle dispersion and its temperature dependence in the pseudogap state of Sr 2 IrO 4 to point to an electronic order with a zero scattering wave vector and limited correlation length. Particle–hole symmetric preformed Cooper pairs are discussed as a viable mechanism for such an electronic order. The potential roles of incommensurate density waves are also discussed.more » « less
-
Abstract We model the pseudogap state of the hole- and electron-doped cuprates as a metal with hole and/or electron pocket Fermi surfaces. In the absence of long-range antiferromagnetism, such Fermi surfaces violate the Luttinger requirement of enclosing the same area as free electrons at the same density. Using the Ancilla theory of such a pseudogap state, we describe the onset of conventionald-wave superconductivity by the condensation of a chargeeHiggs boson transforming as a fundamental under the emergent SU(2) gauge symmetry of a backgroundπ-flux spin liquid. In all cases, we find that thed-wave superconductor has gapless Bogoliubov quasiparticles at 4 nodal points on the Brillouin zone diagonals with significant velocity anisotropy, just as in the BCS state. This includes the case of the electron-doped pseudogap metal with only electron pockets centered at wavevectors (π, 0), (0, π), and an electronic gap along the zone diagonals. Remarkably, in this case, too, gapless nodal Bogoliubov quasiparticles emerge within the gap at 4 points along the zone diagonals upon the onset of superconductivity.more » « less
-
Pair density waves (PDWs) are a inhomogeneous superconducting states whose Cooper pairs possess a finite momentum resulting in a oscillatory gap in space, even in the absence of an external magnetic field. There is growing evidence for the existence of PDW superconducting order in many strongly correlated materials, particularly in the cuprate superconductors and in several other different types of systems. A feature of the PDW state is that inherently it has a CDW as a composite order associated with it. Here we study the structure of the electronic topological defects of the PDW, paying special attention to the half-vortex and its electronic structure that can be detected in STM experiments. We discuss tell-tale signatures of the defects in violations of inversion symmetry, in the excitation spectrum and their spectral functions in the presence of topological defects. We discuss the “Fermi surface” topology of Bogoliubov quasiparticle of the PDWphases, and we briefly discuss the role of quasiparticle interference.more » « less
An official website of the United States government

