To estimate the calcium carbonate (CaCO3) content in the Site U1543 sediment core samples retrieved during International Ocean Discovery Program (IODP) Expedition 383 at high downcore resolution, the X-ray fluorescence (XRF) scanning Ca data, at a spacing of every 10 mm downcore, were calibrated using a total of 118 coulometry-based discrete CaCO3 analyses from the upper 30 meters composite depth (mcd) along the splice. To remove the volume measurement problems of XRF and estimating CaCO3 contents quantitatively, first, raw XRF peak areas were scaled to reduce the effect resulting from the differences in efficiency at absorbing X-rays. Then, the scaled XRF scanning data were normalized to adjust the variability of the amount of XRF peak areas due to porosity and calibrated to properly estimate CaCO3 content. Based on the quality assessment, the calibrated XRF CaCO3 estimates are within ±4.50 wt% of the discrete measurements (1 standard deviation). This data report presents a discrete CaCO3 measurement data set, a normalized median-scaled XRF data set, and XRF CaCO3 estimates on the core depth below seafloor, Method A (CSF-A), and core composite depth below seafloor, Method A (CCSF-A), depth scales.
more »
« less
Data report: X-ray fluorescence studies of Site U1457 sediments, Laxmi Basin, Arabian Sea
Bulk sediment chemistry was measured at 2 cm resolution along cores from International Ocean Discovery Program (IODP) Site U1457 using the X-ray fluorescence (XRF) core scanner at the IODP Gulf Coast Repository. The Pleistocene splice section assembled from Holes U1457A and U1457B was scanned in its entirety, and nearly continuous sediment bulk chemistry profiles were constructed to a depth of 125 m core composite depth below seafloor (CCSF). Some sections of Hole U1457C were also scanned: (1) an upper Miocene hemipelagic section and (2) a 30 m lower Paleocene section directly overlying basalt. In the Pleistocene spliced sections, 2 cm spacing represents a sampling resolution of 150–300 y, whereas in the upper Miocene section this spacing represents about 500 y between samples. We report data and acquisition conditions for major and many minor elements. We find large variability in CaCO3 content in the Pleistocene section, from around 14 to 89 wt%. We used discrete shipboard CaCO3 measurements to calibrate the XRF Ca data. CaCO3 has cyclic variability and correlates with light sediment colors. Variation in aluminosilicate elements is largely caused by changes in dilution by CaCO3. The lower part of the spliced section, presumably representing distal Indus Fan deposits, has a distinctive but more uniform composition than the upper part.
more »
« less
- Award ID(s):
- 1326927
- PAR ID:
- 10229641
- Date Published:
- Journal Name:
- Proceedings of the International Ocean Discovery Program
- Volume:
- 355
- ISSN:
- 2377-3189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
International Ocean Discovery Program (IODP) Expeditions 390C, 395E, 390, and 393 recovered deepwater sediments from the western flank of the Mid-Atlantic Ridge in the South Atlantic Ocean along the South Atlantic Transect (SAT) at ~31°S. Collectively, these expeditions recovered ~2 km of sediment cores that have the potential to capture key features of Cenozoic climate change. In this report, we show semiquantitative bulk elemental results from X-ray fluorescence (XRF) scanning of the sediment cores from IODP Site U1560 recovered during Expeditions 395E and 393. The oceanic basement at this site is ~15 My old, making it the second youngest of the SAT sites located west of the Mid-Atlantic Ridge. Here, XRF data are compared with pass-through magnetic susceptibility and natural gamma radiation of the sediment cores, measured aboard JOIDES Resolution. The resulting trends and correlations highlight elemental variations through time, mainly reflecting lithologic and compositional differences. At Site U1560, Ca counts reflect the occurrence of nannofossil ooze, which is the dominant lithology for the whole site. In the Miocene-aged Lithologic Units IE–IA from 140 to 50 m core composite depth below seafloor (CCSF), several high-intensity spikes of detrital elements (i.e., Fe, Ti, Al, Si, and Zr) correspond to intervals of clay-rich nannofossil ooze. Detrital elemental counts in the entire Pliocene record (50 to ~25 m CCSF) are the lowest. A sharp shift is observed at the Pliocene/Pleistocene boundary at ~25 m CCSF, with the uppermost Pleistocene record showing high-frequency and high-intensity variations in siliciclastic elements, which correlates well with the pass-through magnetic susceptibility.more » « less
-
null (Ed.)X-ray fluorescence (XRF) core scanning was conducted on core sections from International Ocean Discovery Program Site U1474, located in the Natal Valley off the coast of South Africa. The data were collected at 2 mm resolution along the 255 m length of the splice, but this setting resulted in noisy data. This problem was addressed by applying a 10 point running sum on the XRF data prior to converting peak area to element intensities. This effectively integrates 10 measurements into 1, representing an average over 2 cm resolution, and significantly improves noise in the data. With 25 calibration samples, whose element concentrations were derived using inductively coupled plasma–optical emission spectrometry, the XRF measurements were converted to concentrations using a univariate log-ratio calibration method. The resulting concentrations of terrigenously derived major elements (Al, Si, K, Ti, and Fe) are anticorrelated with Ca concentrations, indicating the main control on sediment chemistry is the variable proportion of terrigenous to in situ produced carbonate material.more » « less
-
During International Ocean Discovery Program (IODP) Expeditions 390C, 395E, 390, and 393, deepwater sediments were recovered from the western flank of the southern Mid-Atlantic Ridge along a crustal flow line at ~31°S. This multidisciplinary experiment allowed the recovery of data fundamental to reconstructing past climate changes as well as variations in ocean circulation, productivity, and chemistry (i.e., fluctuations in the carbonate compensation depth) in the South Atlantic Ocean. Here, we report semiquantitative elemental results from X-ray fluorescence (XRF) scanning of the sediment package cored at IODP Site U1559 in the South Atlantic Ocean. Located at 15°02.0941′W, Site U1559 is the easternmost site of the South Atlantic Transect and the closest to the Mid-Atlantic Ridge, located on ~6.6. Ma ocean crust. The XRF data are also compared with magnetic susceptibility and natural gamma radiation measured on the R/V JOIDES Resolution to assess correlations with the different lithologic units/subunits. At Site U1559, sediments are predominantly nannofossil ooze with varying amounts of foraminifera, which is reflected by the dominant Ca counts. Trends in elemental counts reflect the slight variations in siliciclastic materials within the Pleistocene. Major shifts in elemental counts were observed at the sharp contact between Pliocene–Pleistocene Subunits IC and ID, as well as the Miocene–Pliocene transition.more » « less
-
null (Ed.)The shipboard sediment splice of International Ocean Discovery Program Expedition 363 Site U1483, drilled in 1733 m water depth on the Scott Plateau off Northwest Australia, was primarily based on a composite of the magnetic susceptibility records at 2.5 cm resolution from three holes drilled at this site. We performed X-ray fluorescence (XRF) core scanning at 2 cm intervals with overlaps of ~1–2 m at splice tie points and used these new data to verify the tie points along the original splice from 0 to 211.53 m core composite depth below seafloor (CCSF). Based on the XRF records, we revised the position of three original tie points and present a revised composite depth scale for Site U1483. These revisions resulted in shifts of up to 94 cm relative to the original shipboard offsets and a continuous section extending down to 211.62 m revised core composite depth below seafloor (r-CCSF).more » « less
An official website of the United States government

