Abstract The motion of quantized vortices is responsible for many intriguing phenomena in diverse quantum-fluid systems. Having a theoretical model to reliably predict the vortex motion therefore promises a broad significance. But a grand challenge in developing such a model is to evaluate the dissipative force caused by thermal quasiparticles in the quantum fluids scattering off the vortex cores. Various models have been proposed, but it remains unclear which model describes reality due to the lack of comparative experimental data. Here we report a visualization study of quantized vortex rings propagating in superfluid helium. By examining how the vortex rings spontaneously decay, we provide decisive data to identify the model that best reproduces observations. This study helps to eliminate ambiguities about the dissipative force acting on vortices, which could have implications for research in various quantum-fluid systems that also involve similar forces, such as superfluid neutron stars and gravity-mapped holographic superfluids.
more »
« less
Controlled creation and decay of singly-quantized vortices in a polar magnetic phase
Abstract Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87 Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices.
more »
« less
- Award ID(s):
- 1806318
- PAR ID:
- 10229811
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the effect of particle inertia on the merger of co-rotating dusty vortex pairs at semi-dilute concentrations. In a particle-free flow, the merger is triggered once the ratio of vortex core size to vortex separation reaches a critical value. The vortex pair separation then decreases monotonically until the two cores merge together. Using Eulerian–Lagrangian simulations of co-rotating particle-laden vortices, we show substantial departure from the vortex dynamics previously established in particle-free flows. Most strikingly, we find that disperse particles with moderate inertia cause the vortex pair to push apart to a separation nearly twice as large as the initial separation. During this stage, the drag force exerted by particles ejected out of the vortex cores on the fluid results in a net repulsive force that pushes the two cores apart. Eventually, the two dusty vortices merge into a single vortex with most particles accumulating outside the core, similar to the dusty Lamb–Oseen vortex described in Shuai & Kasbaoui (J. Fluid Mech., vol 936, 2022, p. A8). For weakly inertial particles, we find that the merger dynamics follows the same mechanics as that of a single-phase flow, albeit with a density that must be adjusted to match the mixture density. For highly inertial particles, the feedback force exerted by the particles on the fluid may stretch the two cores during the merger to a point where each core splits into two, resulting in inner and outer vortex pairs. In this case, the merger occurs in two stages where the inner vortices merge first, followed by the outer ones.more » « less
-
Abstract We consider pairs of point vortices having circulations $$\Gamma _{1}$$ and $$\Gamma _{2}$$ and confined to a two-dimensional surface $$S$$. In the limit of zero initial separation $$\varepsilon $$, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $$1/\varepsilon ^{2}$$ in an magnetic field $$B$$ that is everywhere normal to the surface and of strength $$|B|=\Gamma _{1} +\Gamma _{2}$$. In the case $$\Gamma _{1}=-\Gamma _{2}$$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.more » « less
-
Artificial Pinning Centers in (Y,RE)-Ba-Cu-O Superconductors: Recent Progress and Future PerspectiveA microscopic understanding of vortex pinning in type II superconductors began with the theoretical discovery of magnetic vortices by Abrikosov, which received the 2003 Nobel Prize in Physics [1, 2]. When type II superconductors are exposed to magnetic fields (H), the magnetic field enters as quantized vortices, each with a fundamental flux j0 = 2.07 × 10−11 T cm−2 , or 2.07 × 10−15 Wb. The vortex core size on the order of the superconducting coherence length can be very small, e.g. ∼1–2 nm for the cuprate family of high-temperature superconductors (HTSs). The vortices electrically interact with each other by repelling, and act collectively together as a flux lattice that is affected by the intrinsic crystal lattice properties and microstructure defects. For superconducting power applications where applied magnetic fields are in the range of 0.1 T to >30 T, the areal number density of the vortices can reach incredibly high values. For example, for an applied magnetic field of 5 T, the vortex areal density is around 2.5 × 1011 cm−2 , which translates to inter-vortex spacing of about 20 nm (assuming a square lattice for vortices). Somewhat surprisingly, if the crystal lattice for type II superconductors, such as HTS cuprates [3] is nearly perfect without any defects to pin vortices, the vortices can move collectively and almost freely in an applied magnetic field due to Lorentz forces, which results in electrical resistance at a fairly low critical current density Jc(H, T) at an applied magnetic field (H) and temperature (T). In order to realize useful critical current densities in type II superconductors, imperfections and defects must be added to the crystal lattice to effectively pin vortices. The simplest example of this was achieved in the (Y, RE)Ba2Cu3O7 (where RE is rare earth elements) family by depositing thin films, in which high densities of dislocations and other growth defects are added into the film microstructure and dramatically increase the critical current density Jc(77 K, H//c-axis) > 106 A cm−2 compared to Jc (77 K) < 103 A cm−2 for single crystals [4–6]more » « less
-
We investigate the effect of inertial particles on the stability and decay of a prototypical vortex tube, represented by a two-dimensional Lamb–Oseen vortex. In the absence of particles, the strong stability of this flow makes it resilient to perturbations, whereby vorticity and enstrophy decay at a slow rate controlled by viscosity. Using Eulerian–Lagrangian simulations, we show that the dispersion of semidilute inertial particles accelerates the decay of the vortex tube by orders of magnitude. In this work, mass loading is unity, ensuring that the fluid and particle phases are tightly coupled. Particle inertia and vortex strength are varied to yield Stokes numbers 0.1–0.4 and circulation Reynolds numbers 800–5000. Preferential concentration causes these inertial particles to be ejected from the vortex core forming a ring-shaped cluster and a void fraction bubble that expand outwards. The outward migration of the particles causes a flattening of the vorticity distribution, which enhances the decay of the vortex. The latter is further accelerated by small-scale clustering that causes enstrophy to grow, in contrast with the monotonic decay of enstrophy in single-phase two-dimensional vortices. These dynamics unfold on a time scale that is set by preferential concentration and is two orders of magnitude lower than the viscous time scale. Increasing particle inertia causes a faster decay of the vortex. This work shows that the injection of inertial particles could provide an effective strategy for the control and suppression of resilient vortex tubes.more » « less
An official website of the United States government

