We investigate the effect of inertial particles dispersed in a circular patch of finite radius on the stability of a two-dimensional Rankine vortex in semi-dilute dusty flows. Unlike the particle-free case where no unstable modes exist, we show that the feedback force from the particles triggers a novel instability. The mechanisms driving the instability are characterized using linear stability analysis for weakly inertial particles and further validated against Eulerian–Lagrangian simulations. We show that the particle-laden vortex is always unstable if the mass loading $M>0$ . Surprisingly, even non-inertial particles destabilize the vortex by a mechanism analogous to the centrifugal Rayleigh–Taylor instability in radially stratified vortex with density jump. We identify a critical mass loading above which an eigenmode $$m$$ becomes unstable. This critical mass loading drops to zero as $$m$$ increases. When particles are inertial, modes that fall below the critical mass loading become unstable, whereas modes above it remain unstable but with lower growth rates compared with the non-inertial case. Comparison with Eulerian–Lagrangian simulations shows that growth rates computed from simulations match well the theoretical predictions. Past the linear stage, we observe the emergence of high-wavenumber modes that turn into spiralling arms of concentrated particles emanating out of the core, while regions of particle-free flow are sucked inward. The vorticity field displays a similar pattern which leads to the breakdown of the initial Rankine structure. This novel instability for a dusty vortex highlights how the feedback force from the disperse phase can induce the breakdown of an otherwise resilient vortical structure.
more »
« less
Accelerated decay of a Lamb–Oseen vortex tube laden with inertial particles in Eulerian–Lagrangian simulations
We investigate the effect of inertial particles on the stability and decay of a prototypical vortex tube, represented by a two-dimensional Lamb–Oseen vortex. In the absence of particles, the strong stability of this flow makes it resilient to perturbations, whereby vorticity and enstrophy decay at a slow rate controlled by viscosity. Using Eulerian–Lagrangian simulations, we show that the dispersion of semidilute inertial particles accelerates the decay of the vortex tube by orders of magnitude. In this work, mass loading is unity, ensuring that the fluid and particle phases are tightly coupled. Particle inertia and vortex strength are varied to yield Stokes numbers 0.1–0.4 and circulation Reynolds numbers 800–5000. Preferential concentration causes these inertial particles to be ejected from the vortex core forming a ring-shaped cluster and a void fraction bubble that expand outwards. The outward migration of the particles causes a flattening of the vorticity distribution, which enhances the decay of the vortex. The latter is further accelerated by small-scale clustering that causes enstrophy to grow, in contrast with the monotonic decay of enstrophy in single-phase two-dimensional vortices. These dynamics unfold on a time scale that is set by preferential concentration and is two orders of magnitude lower than the viscous time scale. Increasing particle inertia causes a faster decay of the vortex. This work shows that the injection of inertial particles could provide an effective strategy for the control and suppression of resilient vortex tubes.
more »
« less
- Award ID(s):
- 2148710
- PAR ID:
- 10436101
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 936
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the effect of particle inertia on the merger of co-rotating dusty vortex pairs at semi-dilute concentrations. In a particle-free flow, the merger is triggered once the ratio of vortex core size to vortex separation reaches a critical value. The vortex pair separation then decreases monotonically until the two cores merge together. Using Eulerian–Lagrangian simulations of co-rotating particle-laden vortices, we show substantial departure from the vortex dynamics previously established in particle-free flows. Most strikingly, we find that disperse particles with moderate inertia cause the vortex pair to push apart to a separation nearly twice as large as the initial separation. During this stage, the drag force exerted by particles ejected out of the vortex cores on the fluid results in a net repulsive force that pushes the two cores apart. Eventually, the two dusty vortices merge into a single vortex with most particles accumulating outside the core, similar to the dusty Lamb–Oseen vortex described in Shuai & Kasbaoui (J. Fluid Mech., vol 936, 2022, p. A8). For weakly inertial particles, we find that the merger dynamics follows the same mechanics as that of a single-phase flow, albeit with a density that must be adjusted to match the mixture density. For highly inertial particles, the feedback force exerted by the particles on the fluid may stretch the two cores during the merger to a point where each core splits into two, resulting in inner and outer vortex pairs. In this case, the merger occurs in two stages where the inner vortices merge first, followed by the outer ones.more » « less
-
Clusters of inertial particles in turbulence are usually identified from the spatial coherence of the particle concentration field, neglecting their temporal persistence. The latter is in fact essential to the ability of the particles to interact with each other and to modify the flow. Here, we leverage simulations of homogeneous isotropic turbulence laden with small heavy particles and develop a Lagrangian framework to follow them before, during and after their time as part of a coherent cluster. We define a criterion to establish whether a cluster survives over successive time steps, and use it to characterize its lifetime. We find that cluster lives have typical durations of a few Kolmogorov time scales, with positive correlation between cluster size and lifetime. Increasing inertia and gravitational settling both lead to longer lifetimes. Small clusters emerge from the coagulation of non-clustered particles, quickly followed by disintegration into prevalently non-clustered particles. By contrast, large clusters result from the recombination of other large clusters. The birth of a cluster is preceded by an exponential contraction of the particle cloud, and its death coincides with the beginning of a slower exponential expansion, The contraction is simultaneous to a decline in the local small-scale turbulence activity, while the expansion is accompanied by its recovery. Therefore, during their lifetime, the clusters experience lower-than-average enstrophy and strain rate in the fluid. This relatively quiescent state of the flow is thus a necessary condition for the cluster survival, at least in the considered range of turbulence intensity and particle inertia.more » « less
-
We present a systematic simulation campaign to investigate the pairwise interaction of two mobile, monodisperse particles submerged in a viscous fluid and subjected to monochromatic oscillating flows. To this end, we employ the immersed boundary method to geometrically resolve the flow around the two particles in a non-inertial reference frame. We neglect gravity to focus on fluid–particle interactions associated with particle inertia and consider particles of three different density ratios aligned along the axis of oscillation. We systematically vary the initial particle distance and the frequency based on which the particles show either attractive or repulsive behaviour by approaching or moving away from each other, respectively. This behaviour is consistently confirmed for the three density ratios investigated, although particle inertia dictates the overall magnitude of the particle dynamics. Based on this, threshold conditions for the transition from attraction to repulsion are introduced that obey the same power law for all density ratios investigated. We furthermore analyse the flow patterns by suitable averaging and decomposition of the flow fields and find competing effects of the vorticity induced by the fluid–particle interactions. Based on these flow patterns, we derive a circulation-based criterion that provides a quantitative measure to categorize the different cases. It is shown that such a criterion provides a consistent measure to distinguish the attractive and repulsive arrangements.more » « less
-
null (Ed.)In the presence of inertia-gravity waves, the geostrophic and hydrostatic balance that characterises the slow dynamics of rapidly rotating, strongly stratified flows holds in a time-averaged sense and applies to the Lagrangian-mean velocity and buoyancy. We give an elementary derivation of this wave-averaged balance and illustrate its accuracy in numerical solutions of the three-dimensional Boussinesq equations, using a simple configuration in which vertically planar near-inertial waves interact with a barotropic anticylonic vortex. We further use the conservation of the wave-averaged potential vorticity to predict the change in the barotropic vortex induced by the waves.more » « less
An official website of the United States government

