Blind or Visually Impaired (BVI) individuals often face many challenges while performing daily tasks or exploring new places. Assistive technologies can help independently address some of these challenges, but there remain many tasks that still require some sort of human assistance. Some current approaches to provide remote assistance through video calls are either too expensive or do not use helpers whom a BVI individual can fully trust. This work develops an Android application called GuideCall that enables BVI individuals to draw assistance through a video call with a single volunteer helper selected from one of many pre-constructed situation-appropriate groups of trusted individuals. Guide- Call provides is specifically built to meet the needs of BVI individuals and has some features not present in commodity video-calling applications.
more »
« less
Visualization without Vision – How Blind and Visually Impaired Students and Researchers Engage with Molecular Structures
This article examines the tools and techniques currently available that enable blind and visually impaired (BVI) individuals to visualize three-dimensional objects used in learning chemistry concepts. How BVI individuals engage with and visualize molecular structure is discussed and recent tactile (or haptic) and auditory methods for visualization of various chemistry concepts are summarized. Remaining challenges for chemistry education researchers are described with the aim of highlighting the potential value of educational research in further enabling BVI students to pursue careers in science, technology, engineering, and mathematics (STEM) fields.
more »
« less
- Award ID(s):
- 1856416
- PAR ID:
- 10230109
- Date Published:
- Journal Name:
- The Journal of Science Education for Students with Disabilities
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1940-9923
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized inter-faces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors.more » « less
-
null (Ed.)Though virtual reality (VR) has been advanced to certain levels of maturity in recent years, the general public, especially the population of the blind and visually impaired (BVI), still cannot enjoy the benefit provided by VR. Current VR accessibility applications have been developed either on expensive head-mounted displays or with extra accessories and mechanisms, which are either not accessible or inconvenient for BVI individuals. In this paper, we present a mobile VR app that enables BVI users to access a virtual environment on an iPhone in order to build their skills of perception and recognition of the virtual environment and the virtual objects in the environment. The app uses the iPhone on a selfie stick to simulate a long cane in VR, and applies Augmented Reality (AR) techniques to track the iPhone’s real-time poses in an empty space of the real world, which is then synchronized to the long cane in the VR environment. Due to the use of mixed reality (the integration of VR & AR), we call it the Mixed Reality cane (MR Cane), which provides BVI users auditory and vibrotactile feedback whenever the virtual cane comes in contact with objects in VR. Thus, the MR Cane allows BVI individuals to interact with the virtual objects and identify approximate sizes and locations of the objects in the virtual environment. We performed preliminary user studies with blind-folded participants to investigate the effectiveness of the proposed mobile approach and the results indicate that the proposed MR Cane could be effective to help BVI individuals in understanding the interaction with virtual objects and exploring 3D virtual environments. The MR Cane concept can be extended to new applications of navigation, training and entertainment for BVI individuals without more significant efforts.more » « less
-
Blind & visually impaired (BVI) individuals and those with Autism Spectrum Disorder (ASD) each face unique challenges in navigating unfamiliar indoor environments. In this paper, we propose an indoor positioning and navigation system that guides a user from point A to point B indoors with high accuracy while augmenting their situational awareness. This system has three major components: location recognition (a hybrid indoor localization app that uses Bluetooth Low Energy beacons and Google Tango to provide high accuracy), object recognition (a body-mounted camera to provide the user momentary situational awareness of objects and people), and semantic recognition (map-based annotations to alert the user of static environmental characteristics). This system also features personalized interfaces built upon the unique experiences that both BVI and ASD individuals have in indoor wayfinding and tailors its multimodal feedback to their needs. Here, the technical approach and implementation of this system are discussed, and the results of human subject tests with both BVI and ASD individuals are presented. In addition, we discuss and show the system’s user-centric interface and present points for future work and expansion.more » « less
-
null (Ed.)This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized interfaces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented – a performance study to collect data on mobility (walking speed, collisions, and navigation errors) while using the app, and a usability study to collect user evaluation data on the perceived helpfulness, safety, ease-of-use, and overall experience while using the app. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors. Findings and user feed-back from the studies confirm some of the previous results, while also providing some new insights into the creation of such an app, including the use of customized user interfaces and expanding the types of information provided.more » « less