A Single-Point Mutation in d -Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity
- Award ID(s):
- 2018144
- PAR ID:
- 10230137
- Date Published:
- Journal Name:
- Biochemistry
- Volume:
- 60
- Issue:
- 9
- ISSN:
- 0006-2960
- Page Range / eLocation ID:
- 711 to 724
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abrupt transitions in a southwest USA desert grassland related to the P acific D ecadal O scillationAbstract Prediction of abrupt ecosystem transitions resulting from climatic change will be an essential element of adaptation strategies in the coming decades. In the arid southwest USA, the collapse and recovery of long‐lived perennial grasses have important effects on ecosystem services, but the causes of these variations have been poorly understood. Here we use a quality‐controlled vegetation monitoring dataset initiated in 1915 to show that grass cover dynamics during the 20th century were closely correlated to the Pacific decadal oscillation (PDO) index. The relationship out‐performed models correlating grasses to yearly precipitation and drought indices, suggesting that ecosystem transitions attributed only to local disturbances were instead influenced by climate teleconnections. Shifts in PDO phase over time were associated with the persistent loss of core grass species and recovery of transient species, so recovery of grasses in aggregate concealed significant changes in species composition. However, the relationship between PDO and grass cover broke down after 1995; grass cover is consistently lower than PDO would predict. The decoupling of grass cover from the PDO suggests that a threshold had been crossed in which warming or land degradation overwhelmed the ability of any grass species to recover during favorable periods.more » « less
-
Abstract Evaporation of precipitation from plant surfaces, or interception, is a major component of the global water budget. Interception has been measured and/or modelled across a wide variety of forest types; however, most studies have focused on mature, second‐growth forests, and few studies have examined interception processes across forest age classes. We present data on two components of interception, total canopy interception (Ei) and litter interception—that is, Oi + Oehorizon layers—(Eff), across a forest age chronosequence, from 2 years since harvest to old growth. We used precipitation, throughfall, and stemflow collectors to measure total rainfall (P) and estimateEi; and collected litter biomass and modelled litter wetting and drying to estimate evaporative loss from litter. CanopyEi,Pminus throughfall, increased rapidly with forest age and then levelled off to a maximum of 21% ofPin an old‐growth site. Stemflow also varied across stands, with the highest stemflow (~8% ofP) observed in a 12‐year‐old stand with high stem density. ModelledEffwas 4–6% ofPand did not vary across sites. Total stand‐level interception losses (Ei + Eff) were best predicted by stand age (R2 = 0.77) rather than structural parameters such as basal area (R2 = 0.49) or leaf area (R2 < 0.01). Forest age appears to be an important driver of interception losses from forested mountain watersheds even when stand‐level structural variables are similar. These results will contribute to our understanding of water budgets across the broader matrix of forest ages that characterize the modern forest landscape.more » « less
-
Abstract Flowering and fruiting phenology have been infrequently studied in the ever‐wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever‐wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long‐term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on‐site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community‐ and species‐level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September–November and fruiting peaked in March–April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near‐current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever‐wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region.more » « less
-
Direct recycling methods offer a non‐destructive way to regenerate degraded cathode material. The materials to be recycled in the industry typically constitute a mixture of various cathode materials extracted from a wide variety of retired lithium‐ion batteries. Bridging the gap, a direct recycling method using a low‐temperature sintering process is reported. The degraded cathode mixture of LMO (LiMn2O4) and NMC (LiNiCoMnO2) extracted from retired LIBs was successfully regenerated by the proposed method with a low sintering temperature of 300°C for 4 h. Advanced characterization tools were utilized to validate the full recovery of the crystal structure in the degraded cathode mixture. After regeneration, LMO/NMC cathode mixture shows an initial capacity of 144.0 mAh g−1and a capacity retention of 95.1% at 0.5 C for 250 cycles. The regenerated cathode mixture also shows a capacity of 83 mAh g−1at 2 C, which is slightly higher compared to the pristine material. As a result of the direct recycling process, the electrochemical performance of degraded cathode mixture is recovered to the same level as the pristine material. Life‐cycle assessment results emphasized a 90.4% reduction in energy consumption and a 51% reduction in PM2.5 emissions for lithium‐ion battery packs using a direct recycled cathode mixture compared to the pristine material.more » « less
An official website of the United States government

