Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multi‐scale calcium (Ca2+) dynamics, exhibiting wide‐ranging temporal kinetics, constitutes a ubiquitous mode of signal transduction. We report a novel endoplasmic‐reticulum (ER)‐targeted Ca2+indicator, R‐CatchER, which showed superior kinetics in vitro (koff≥2×103 s−1,kon≥7×106 M−1 s−1) and in multiple cell types. R‐CatchER captured spatiotemporal ER Ca2+dynamics in neurons and hotspots at dendritic branchpoints, enabled the first report of ER Ca2+oscillations mediated by calcium sensing receptors (CaSRs), and revealed ER Ca2+‐based functional cooperativity of CaSR. We elucidate the mechanism of R‐CatchER and propose a principle to rationally design genetically encoded Ca2+indicators with a single Ca2+‐binding site and fast kinetics by tuning rapid fluorescent‐protein dynamics and the electrostatic potential around the chromophore. The design principle is supported by the development of G‐CatchER2, an upgrade of our previous (G‐)CatchER with improved dynamic range. Our work may facilitate protein design, visualizing Ca2+dynamics, and drug discovery.more » « less
-
Serine proteases have been proposed to dynamically sample inactive and active conformations, but direct evidence at atomic resolution has remained elusive. Using nuclear magnetic resonance (NMR), we identified a single residue, D164, in exfoliative toxin A (ETA) that acts as a molecular “switch” to regulate global dynamic sampling. Mutations at this site shift the balance between inactive and active states, correlating directly with catalytic activity. Beyond identifying this dynamic switch, we demonstrate how it works in concert with other allosterically coupled sites to rationally control enzyme movements and catalytic function. This study provides a framework for linking conformational dynamics to function and paves the way for engineering enzymes, in particular, proteases, with tailored activities for applications in medicine and biotechnology.more » « lessFree, publicly-accessible full text available April 11, 2026
An official website of the United States government
