skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Random heterogeneity outperforms design in network synchronization
A widely held assumption on network dynamics is that similar components are more likely to exhibit similar behavior than dissimilar ones and that generic differences among them are necessarily detrimental to synchronization. Here, we show that this assumption does not generally hold in oscillator networks when communication delays are present. We demonstrate, in particular, that random parameter heterogeneity among oscillators can consistently rescue the system from losing synchrony. This finding is supported by electrochemical-oscillator experiments performed on a multielectrode array network. Remarkably, at intermediate levels of heterogeneity, random mismatches are more effective in promoting synchronization than parameter assignments specifically designed to facilitate identical synchronization. Our results suggest that, rather than being eliminated or ignored, intrinsic disorder in technological and biological systems can be harnessed to help maintain coherence required for function.  more » « less
Award ID(s):
1900011
PAR ID:
10230260
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
21
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2024299118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is widely held that identical systems tend to behave similarly under comparable conditions. Yet, for systems that interact through a network, symmetry breaking can lead to scenarios in which this expectation does not hold. Prominent examples are chimera states in multistable phase-oscillator networks. Here, we show that for a broad class of such networks, asynchronous states can be converted into frequency-synchronized states when identical oscillators are detuned to have different intrinsic frequencies. We show that frequency synchronization is achieved over a range of intrinsic frequency detuning and is thus a robust effect. These results, which are supported by theory, simulations, and electrochemical oscillator experiments, reveal a counterintuitive opportunity to use parameter heterogeneity to promote synchronization. 
    more » « less
  2. Prolific growth of sensors and sensor technology has resulted various applications in sensing, monitoring, assessment and control operations. Owing to the large number of sensing units the the aggregate data volume creates a burden to the central data processing unit. This paper demonstrates an analog computational platform using weakly coupled oscillator neural network for pattern recognition applications. The oscillator neural network (ONN) has been studied over the last couple of decades for it’s increasing computational efficiency. The coupled ONN can realize the classification and pattern recognition functionalities based on its synchronization phenomenon. The convergence time and frequency of synchronization are considered as the indicator of recognition. For hierarchical sensing, the synchronization is detected in the first layer, and then the classification is accomplished in the second layer. In this work, a Kuramoto model based frequency synchronization approach is utilized, and simulation results indicate less than 160 ms convergence time and close frequency match for a simplified pattern recognition application. An array of 10 sensors is considered to affect the coupling weights of the oscillating nodes, and demonstrate network level computation. Based on MATLAB simulations, the proposed ONN architecture can successfully detect the close-in-match pattern through synchronization, and differentiate the far-out-match pattern through loss of synchronization in the oscillating nodes. 
    more » « less
  3. Abstract Spontaneous synchronization is ubiquitous in natural and man-made systems. It underlies emergent behaviors such as neuronal response modulation and is fundamental to the coordination of robot swarms and autonomous vehicle fleets. Due to its simplicity and physical interpretability, pulse-coupled oscillators has emerged as one of the standard models for synchronization. However, existing analytical results for this model assume ideal conditions, including homogeneous oscillator frequencies and negligible coupling delays, as well as strict requirements on the initial phase distribution and the network topology. Using reinforcement learning, we obtain an optimal pulse-interaction mechanism (encoded in phase response function) that optimizes the probability of synchronization even in the presence of nonideal conditions. For small oscillator heterogeneities and propagation delays, we propose a heuristic formula for highly effective phase response functions that can be applied to general networks and unrestricted initial phase distributions. This allows us to bypass the need to relearn the phase response function for every new network. 
    more » « less
  4. Model parameter synchronization across GPUs introduces high overheads for data-parallel training at scale. Existing parameter synchronization protocols cannot effectively leverage available network resources in the face of ever increasing hardware heterogeneity. To address this issue, we propose Blink, a collective communication library that dynamically generates optimal communication primitives by packing spanning trees. We propose techniques to minimize the number of trees generated and extend Blink to leverage heterogeneous communication channels for hybrid, and faster, data transfers. Evaluations show that compared to the state-of-the-art (NCCL), Blink can achieve up to 8× faster model synchronization (AllReduce), and reduce end-to-end DNN training time for image classification tasks by up to 40%. 
    more » « less
  5. The ability to achieve coordinated behavior --engineered or emergent-- on networked systems has attracted widespread interest over several fields. This has led to remarkable advances on the development of a theoretical understanding of the conditions under which agents within a network can reach agreement (consensus) or develop coordinated behaviors such as synchronization. However, fewer advances have been made toward explaining another commonly observed phenomena in tightly-connected networks systems: output responses of nodes in the networks are almost identical to each other despite heterogeneity in their individual dynamics. In this work, we leverage tools from high-dimensional probability to provide an initial answer to this phenomena. More precisely, we show that for linear networks of nodal random transfer functions, as the networks size and connectivity grows, every node in the network follows the same response to an input or disturbance irrespectively of the source of this input. We term this behavior as dynamics concentration as it stems from the fact that the network transfer matrix uniformly converges in probability to a unique dynamic response --i.e., it concentrates-- determined by the distribution of the random transfer function of each node. We further discuss the implications of our analysis in the context of model reduction and robustness, and provide numerical evidence that similar phenomena occur in small deterministic networks over a properly defined frequency band. 
    more » « less