skip to main content


Title: Random heterogeneity outperforms design in network synchronization

A widely held assumption on network dynamics is that similar components are more likely to exhibit similar behavior than dissimilar ones and that generic differences among them are necessarily detrimental to synchronization. Here, we show that this assumption does not generally hold in oscillator networks when communication delays are present. We demonstrate, in particular, that random parameter heterogeneity among oscillators can consistently rescue the system from losing synchrony. This finding is supported by electrochemical-oscillator experiments performed on a multielectrode array network. Remarkably, at intermediate levels of heterogeneity, random mismatches are more effective in promoting synchronization than parameter assignments specifically designed to facilitate identical synchronization. Our results suggest that, rather than being eliminated or ignored, intrinsic disorder in technological and biological systems can be harnessed to help maintain coherence required for function.

 
more » « less
Award ID(s):
1900011
NSF-PAR ID:
10230260
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
21
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2024299118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stochastic oscillators based on emerging nanodevices are attractive because of their ultra-low power requirement and the ability to exhibit stochastic resonance, a phenomenon where synchronization to weak input signals is enabled due to ambient noise. In this work, a low barrier nanomagnet-based stochastic oscillator is demonstrated, whose output jumps spontaneously between two states by harnessing the ambient thermal noise, requiring no additional power. By utilizing spin–orbit torque in a three-terminal device configuration, phase synchronization of these oscillators to weak periodic drives of particular frequencies is demonstrated. Experiments are performed to show the tunability of this synchronization frequency by controlling an electrical feedback parameter. The current required for synchronization is more than eight times smaller than that required for the deterministic switching of similar nanomagnetic devices. A model based on Kramers’ transition rate in a symmetric double well potential is adopted and dynamical simulations are performed to explain the experimental results.

     
    more » « less
  2. The ability to achieve coordinated behavior --engineered or emergent-- on networked systems has attracted widespread interest over several fields. This has led to remarkable advances on the development of a theoretical understanding of the conditions under which agents within a network can reach agreement (consensus) or develop coordinated behaviors such as synchronization. However, fewer advances have been made toward explaining another commonly observed phenomena in tightly-connected networks systems: output responses of nodes in the networks are almost identical to each other despite heterogeneity in their individual dynamics. In this work, we leverage tools from high-dimensional probability to provide an initial answer to this phenomena. More precisely, we show that for linear networks of nodal random transfer functions, as the networks size and connectivity grows, every node in the network follows the same response to an input or disturbance irrespectively of the source of this input. We term this behavior as dynamics concentration as it stems from the fact that the network transfer matrix uniformly converges in probability to a unique dynamic response --i.e., it concentrates-- determined by the distribution of the random transfer function of each node. We further discuss the implications of our analysis in the context of model reduction and robustness, and provide numerical evidence that similar phenomena occur in small deterministic networks over a properly defined frequency band. 
    more » « less
  3. There is a rich theory and plethora of algorithms in the literature aiming at the efficient scheduling of stochastic networks. These solutions are predominantly designed under the assumption of traffic demands that are independently generated at network nodes, without any requirement for synchronization among their received services. In this work, we note that many applications, including cloud computing, virtual reality, gaming, autonomous vehicular networks and collaborative design, generate traffic simultaneously at multiple nodes when they arrive, with possibly non-uniform file sizes, whose performance relies on the synchronous completion of the traffic across the network. This calls for the design of new scheduling algorithms that aims to coordinate the service of packets of the same traffic across the network. Towards this end, we propose a novel scheduling algorithm that not only accounts for the heterogeneity of the file size distributions, but also works towards synchronizing the completion time of the same traffic stream across the network. This is achieved by employing two insights that emanate from key motivating examples we develop: (1) the normalization of traffic load with respect to the non-uniform file sizes; and (2) the incorporation of deviation of normalized loads across network nodes that serve synchronized traffic. After establishing the throughput-optimality of our algorithm in general stochastic networks, we perform extensive simulations under various (spanning both wired and wireless) settings to reveal the potential completion time gains that it yields over other throughput-optimal strategies designed under the assumption of independent traffic generation. 
    more » « less
  4. There is a rich theory and plethora of algorithms in the literature aiming at the efficient scheduling of stochastic networks. These solutions are predominantly designed under the assumption of traffic demands that are independently generated at network nodes, without any requirement for synchronization among their received services. In this work, we note that many applications, including cloud computing, virtual reality, gaming, autonomous vehicular networks and collaborative design, generate traffic simultaneously at multiple nodes when they arrive, with possibly non-uniform file sizes, whose performance relies on the synchronous completion of the traffic across the network. This calls for the design of new scheduling algorithms that aims to coordinate the service of packets of the same traffic across the network. Towards this end, we propose a novel scheduling algorithm that not only accounts for the heterogeneity of the file size distributions, but also works towards synchronizing the completion time of the same traffic stream across the network. This is achieved by employing two insights that emanate from key motivating examples we develop: (1) the normalization of traffic load with respect to the non-uniform file sizes; and (2) the incorporation of deviation of normalized loads across network nodes that serve synchronized traffic. After establishing the throughput-optimality of our algorithm in general stochastic networks, we perform extensive simulations under various (spanning both wired and wireless) settings to reveal the potential completion time gains that it yields over other throughput-optimal strategies designed under the assumption of independent traffic generation. 
    more » « less
  5. A body of research demonstrates convincingly a role for synchronization of auditory cortex to rhythmic structure in sounds including speech and music. Some studies hypothesize that an oscillator in auditory cortex could underlie important temporal processes such as segmentation and prediction. An important critique of these findings raises the plausible concern that what is measured is perhaps not an oscillator but is instead a sequence of evoked responses. The two distinct mechanisms could look very similar in the case of rhythmic input, but an oscillator might better provide the computational roles mentioned above (i.e., segmentation and prediction). We advance an approach to adjudicate between the two models: analyzing the phase lag between stimulus and neural signal across different stimulation rates. We ran numerical simulations of evoked and oscillatory computational models, showing that in the evoked case,phase lag is heavily rate-dependent, while the oscillatory model displays marked phase concentration across stimulation rates. Next, we compared these model predictions with magnetoencephalography data recorded while participants listened to music of varying note rates. Our results show that the phase concentration of the experimental data is more in line with the oscillatory model than with the evoked model. This finding supports an auditory cortical signal that (i) contains components of both bottom-up evoked responses and internal oscillatory synchronization whose strengths are weighted by their appropriateness for particular stimulus types and (ii) cannot be explained by evoked responses alone.

     
    more » « less