skip to main content


Title: The Human DNA Mismatch Repair Protein MSH3 Contains Nuclear Localization and Export Signals That Enable Nuclear-Cytosolic Shuttling in Response to Inflammation
ABSTRACT Inactivation of DNA mismatch repair propels colorectal cancer (CRC) tumorigenesis. CRCs exhibiting e levated m icrosatellite a lterations at s elected t etranucleotide repeats (EMAST) show reduced nuclear MutS homolog 3 (MSH3) expression with surrounding inflammation and portend poor patient outcomes. MSH3 reversibly exits from the nucleus to the cytosol in response to the proinflammatory cytokine interleukin-6 (IL-6), suggesting that MSH3 may be a shuttling protein. In this study, we manipulated three putative nuclear localization (NLS1 to -3) and two potential nuclear export signals (NES1 and -2) within MSH3. We found that both NLS1 and NLS2 possess nuclear import function, with NLS1 responsible for nuclear localization within full-length MSH3. We also found that NES1 and NES2 work synergistically to maximize nuclear export, with both being required for IL-6-induced MSH3 export. We examined a 27-bp deletion (Δ27bp) within the polymorphic exon 1 that occurs frequently in human CRC cells and neighbors NLS1. With oxidative stress, MSH3 with this deletion (Δ27bp MSH3) localizes to the cytoplasm, suggesting that NLS1 function in Δ27bp MSH3 is compromised. Overall, MSH3’s shuttling in response to inflammation enables accumulation in the cytoplasm; reduced nuclear MSH3 increases EMAST and DNA damage. We suggest that polymorphic sequences adjacent to NLS1 may enhance cytosolic retention, which has clinical implications for inflammation-associated neoplastic processes.  more » « less
Award ID(s):
1901191 2030790 2025426
NSF-PAR ID:
10230321
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular and Cellular Biology
Volume:
40
Issue:
13
ISSN:
0270-7306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fusobacterium nucleatumis implicated in accelerating colorectal cancer (CRC) and is found within metastatic CRC cells in patient biopsies. Here, we found that bacterial invasion of CRC cells and cocultured immune cells induced a differential cytokine secretion that may contribute to CRC metastasis. We used a modified galactose kinase markerless gene deletion approach and found thatF. nucleatuminvaded cultured HCT116 CRC cells through the bacterial surface adhesin Fap2. In turn, Fap2-dependent invasion induced the secretion of the proinflammatory cytokines IL-8 and CXCL1, which are associated with CRC progression and promoted HCT116 cell migration. Conditioned medium fromF. nucleatum–infected HCT116 cells caused naïve cells to migrate, which was blocked by depleting CXCL1 and IL-8 from the conditioned medium. Cytokine secretion from HCT116 cells and cellular migration were attenuated by inhibitingF. nucleatumhost-cell binding and entry using galactose sugars,l-arginine, neutralizing membrane protein antibodies, orfap2deletion.F. nucleatumalso induces the mobilization of immune cells in the tumor microenvironment. However, in neutrophils and macrophages, the bacterial-induced secretion of cytokines was Fap2 independent. Thus, our findings show thatF. nucleatumboth directly and indirectly modulates immune and cancer cell signaling and migration. Because increased IL-8 and CXCL1 production in tumors is associated with increased metastatic potential and cell seeding, poor prognosis, and enhanced recruitment of tumor-associated macrophages and fibroblasts, we propose that inhibition of host-cell binding and invasion, potentially through vaccination or novel galactoside compounds, could be an effective strategy for reducingF. nucleatum–associated CRC metastasis.

     
    more » « less
  2. Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations—as found in patients suffering from Ataxia Telangiectasia and many human cancers—which could lead to enhanced cell migration and increased metastatic potential. 
    more » « less
  3. Abstract

    Yes-associated protein 1 (YAP) is a transcriptional regulator with critical roles in mechanotransduction, organ size control, and regeneration. Here, using advanced tools for real-time visualization of native YAP and target gene transcription dynamics, we show that a cycle of fast exodus of nuclear YAP to the cytoplasm followed by fast reentry to the nucleus (“localization-resets”) activates YAP target genes. These “resets” are induced by calcium signaling, modulation of actomyosin contractility, or mitosis. Using nascent-transcription reporter knock-ins of YAP target genes, we show a strict association between these resets and downstream transcription. Oncogenically-transformed cell lines lack localization-resets and instead show dramatically elevated rates of nucleocytoplasmic shuttling of YAP, suggesting an escape from compartmentalization-based control. The single-cell localization and transcription traces suggest that YAP activity is not a simple linear function of nuclear enrichment and point to a model of transcriptional activation based on nucleocytoplasmic exchange properties of YAP.

     
    more » « less
  4. null (Ed.)
    Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease. 
    more » « less
  5. Abstract

    At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.

     
    more » « less