skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into the charge-transfer character of electronic transitions in R Cp 2 Ti(C 2 Fc) 2 complexes using solvatochromism, resonance Raman spectroscopy, and TDDFT
A series of complexes with low-energy Fe II to Ti IV metal-to-metal charge-transfer (MMCT) transitions, Cp 2 Ti(C 2 Fc) 2 , Cp* 2 Ti(C 2 Fc) 2 , and MeOOC Cp 2 Ti(C 2 Fc) 2 , was investigated using solvatochromism and resonance Raman spectroscopy (RRS) augmented with time-dependent density functional theory (TDDFT) calculations in order to interrogate the nature of the CT transitions. Computational models were benchmarked against the experimental UV-Vis spectra and B3LYP/6-31G(d) was found to most faithfully represent the spectra. The energy of the MMCT transition was measured in 15 different solvents and a multivariate fit to the Catalán solvent parameters – solvent polarizability (SP), solvent dipolarity (SdP), solvent basicity (SB), and solvent acidity (SA) – was performed. The effect of SP indicates a greater degree of electron delocalization in the excited state (ES) than the ground state (GS). The small negative solvatochromism with respect to SdP indicates a smaller dipole moment in the ES than the GS. The effect of SB is consistent with charge-transfer to Ti. Upon excitation into the MMCT absorption band, the RRS data show enhancement of the alkyne stretching modes and of the out-of-plane bending modes of the cyclopentadienyl ring connected to Fe and the alkyne bridge. This is consistent with changes in the oxidation states of Ti and Fe, respectively. The higher-energy transitions (350–450 nm) show enhancement of vibrational modes consistent with ethnylcyclopentadienyl to Ti ligand-to-metal charge transfer (LMCT). The RRS data is consistent with the TDDFT predicted character of these transitions. TDDFT suggests that the lowest-energy transition in Cp 2 Ti(C 2 Fc) 2 CuI, where CuI is coordinated between the alkynes, retains its Fe II to Ti IV MMCT character, in agreement with the RRS data, but that the lowest-energy transitions have significant CuI to Ti character. For Cp 2 Ti(C 2 Fc) 2 CuI, excitation into the low-energy MMCT absorption band results in selective enhancement of the symmetric alkynyl stretching mode.  more » « less
Award ID(s):
1655740 2018427
PAR ID:
10230370
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
50
Issue:
6
ISSN:
1477-9226
Page Range / eLocation ID:
2233 to 2242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state, but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl or Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 x 10–3 ( = 0.18 s). TDDFT calculations suggest emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer. 
    more » « less
  2. Water soluble ferrocene (Fc) derivatives are promising cathode materials for aqueous organic redox flow batteries (AORFBs) towards scalable energy storage. However, their structure–performance relationship and degradation mechanism in aqueous electrolytes remain unclear. Herein, physicochemical and electrochemical properties, battery performance, and degradation mechanisms of three Fc catholytes, (ferrocenylmethyl)trimethylammonium chloride (C1-FcNCl), (2-ferrocenyl-ethyl)trimethylammonium chloride (C2-FcNCl), and (3-ferrocenyl-propyl)trimethylammonium chloride (C3-FcNCl) in pH neutral aqueous electrolytes were systemically investigated. UV-Vis and gas chromatography (GC) studies confirmed the thermal and photolytic C x -Cp − ligand dissociation decomposition pathways of both discharged and charged states of C1-FcNCl and C2-FcNCl catholytes. In contrast, in the case of the C3-FcNCl catholyte, the electron-donating 3-(trimethylammonium)propyl group strengthens the coordination between the C 3 -Cp − ligand and the Fe 3+ or Fe 2+ center and thus mitigates the ligand-dissociation degradation. Consistently, the Fc electrolytes displayed cycling stability in both half-cell and full-cell flow batteries in the order of C1-FcNCl < C2-FcNCl < C3-FcNCl. 
    more » « less
  3. null (Ed.)
    The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+. 
    more » « less
  4. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  5. Sb V F 5 is generally assumed to oxidize methane through a methanium-to-methyl cation mechanism. However, experimentally no H 2 is observed, and the mechanism of methane oxidation has remained unsolved for several decades. To solve this problem, density functional theory calculations with multiple chemical models (mononuclear and dinuclear) were used to examine methane oxidation by Sb V F 5 in the presence of CO leading to the methyl acylium cation ([CH 3 CO] + ). While there is a low barrier for methane protonation by [Sb V F 6 ] − [H] + (the combination of Sb V F 5 and HF) to give the [Sb V F 5 ] − [CH 5 ] + ion pair, H 2 dissociation is a relatively high energy process, even with CO assistance, and so this protonation pathway is reversible. While Sb-mediated hydride transfer has a reasonable barrier, the C–H activation/σ-bond metathesis mechanism with the formation of an Sb V –Me intermediate is lower in energy. This pathway leads to the acylium cation by functionalization of the Sb V –Me intermediate with CO and is consistent with no observation of H 2 . Because this C–H activation/metal-alkyl functionalization pathway is higher in energy than methane protonation, it is also consistent with the experimentally observed methane hydrogen-to-deuterium exchange. This is the first time that evidence is presented demonstrating that Sb V F 5 acts beyond a Bronsted superacid and involves C–H activation with an organometallic intermediate. In contrast to methane, due to the much lower carbocation hydride affinity, isobutane significantly favors hydride transfer to give the tert -butyl carbocation with concomitant Sb V to Sb III reduction. In this mechanism, the resulting highly acidic Sb V –H intermediate provides a route to H 2 through protonation of isobutane, which is consistent with experiments and resolves the longstanding enigma of different experimental results for methane versus isobutane. 
    more » « less