Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state, but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl or Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 x 10–3 ( = 0.18 s). TDDFT calculations suggest emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
more »
« less
Insights into the charge-transfer character of electronic transitions in R Cp 2 Ti(C 2 Fc) 2 complexes using solvatochromism, resonance Raman spectroscopy, and TDDFT
A series of complexes with low-energy Fe II to Ti IV metal-to-metal charge-transfer (MMCT) transitions, Cp 2 Ti(C 2 Fc) 2 , Cp* 2 Ti(C 2 Fc) 2 , and MeOOC Cp 2 Ti(C 2 Fc) 2 , was investigated using solvatochromism and resonance Raman spectroscopy (RRS) augmented with time-dependent density functional theory (TDDFT) calculations in order to interrogate the nature of the CT transitions. Computational models were benchmarked against the experimental UV-Vis spectra and B3LYP/6-31G(d) was found to most faithfully represent the spectra. The energy of the MMCT transition was measured in 15 different solvents and a multivariate fit to the Catalán solvent parameters – solvent polarizability (SP), solvent dipolarity (SdP), solvent basicity (SB), and solvent acidity (SA) – was performed. The effect of SP indicates a greater degree of electron delocalization in the excited state (ES) than the ground state (GS). The small negative solvatochromism with respect to SdP indicates a smaller dipole moment in the ES than the GS. The effect of SB is consistent with charge-transfer to Ti. Upon excitation into the MMCT absorption band, the RRS data show enhancement of the alkyne stretching modes and of the out-of-plane bending modes of the cyclopentadienyl ring connected to Fe and the alkyne bridge. This is consistent with changes in the oxidation states of Ti and Fe, respectively. The higher-energy transitions (350–450 nm) show enhancement of vibrational modes consistent with ethnylcyclopentadienyl to Ti ligand-to-metal charge transfer (LMCT). The RRS data is consistent with the TDDFT predicted character of these transitions. TDDFT suggests that the lowest-energy transition in Cp 2 Ti(C 2 Fc) 2 CuI, where CuI is coordinated between the alkynes, retains its Fe II to Ti IV MMCT character, in agreement with the RRS data, but that the lowest-energy transitions have significant CuI to Ti character. For Cp 2 Ti(C 2 Fc) 2 CuI, excitation into the low-energy MMCT absorption band results in selective enhancement of the symmetric alkynyl stretching mode.
more »
« less
- PAR ID:
- 10230370
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 50
- Issue:
- 6
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 2233 to 2242
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Water soluble ferrocene (Fc) derivatives are promising cathode materials for aqueous organic redox flow batteries (AORFBs) towards scalable energy storage. However, their structure–performance relationship and degradation mechanism in aqueous electrolytes remain unclear. Herein, physicochemical and electrochemical properties, battery performance, and degradation mechanisms of three Fc catholytes, (ferrocenylmethyl)trimethylammonium chloride (C1-FcNCl), (2-ferrocenyl-ethyl)trimethylammonium chloride (C2-FcNCl), and (3-ferrocenyl-propyl)trimethylammonium chloride (C3-FcNCl) in pH neutral aqueous electrolytes were systemically investigated. UV-Vis and gas chromatography (GC) studies confirmed the thermal and photolytic C x -Cp − ligand dissociation decomposition pathways of both discharged and charged states of C1-FcNCl and C2-FcNCl catholytes. In contrast, in the case of the C3-FcNCl catholyte, the electron-donating 3-(trimethylammonium)propyl group strengthens the coordination between the C 3 -Cp − ligand and the Fe 3+ or Fe 2+ center and thus mitigates the ligand-dissociation degradation. Consistently, the Fc electrolytes displayed cycling stability in both half-cell and full-cell flow batteries in the order of C1-FcNCl < C2-FcNCl < C3-FcNCl.more » « less
-
null (Ed.)The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+.more » « less
-
The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds.more » « less
-
Cyclopentadienyl (Cp), a classic ancillary ligand platform, can be chemically noninnocent in electrocatalytic H−H bond formation reactions via protonation of coordinated η5-Cp ligands to form η4-CpH moieties. However, the kinetics of η5-Cp ring protonation, ligand-to-metal (or metal-to-ligand) proton transfer, and the influence of solvent during H2 production electrocatalysis remain poorly understood. We report in-depth kinetic details for electrocatalytic H2 production with Fe complexes containing amine-functionalized CpN3 ligands that are protonated via exogenous acid to generate via η4-CpN3H intermediates (CpN3 = 6-amino-1,4-dimethyl-5,7-diphenyl-2,3,4,6-tetrahydrocyclopenta[b]pyrazin-6-yl). Under reducing conditions, state-of-the-art DFT calculations reveal that a coordinated solvent plays a crucial role in mediating stereo- and regioselective proton transfer to generate (endo-CpN3H)Fe(CO)2(NCMe), with other protonation pathways being kinetically insurmountable. To demonstrate regioselective endo-CpN3H formation, the isoelectronic model complex (endo-CpN3H)Fe(CO)3 is independently prepared, and kinetic studies with the on-cycle hydride intermediate CpN3FeH(CO)2 under CO cleanly furnish the ring-activated complex (endo-CpN3H)Fe(CO)3 via metal-to-ligand proton migration. The on-cycle complex CpN3FeH(CO)2 reacts with acid to release H2 and regenerate [CpN3Fe(CO)2(NCMe)]+, which was found to be the TOF-determining step via DFT. Collectively, these experimental and computational results underscore the emerging importance of Cp ring activation, inner-sphere solvation, and metal−ligand cooperativity to perform proton-coupled electron transfer catalysis for chemical fuel synthesis.more » « less