skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MEMS Acoustic Emission Sensors
This paper presents a review of state-of-the-art micro-electro-mechanical-systems (MEMS) acoustic emission (AE) sensors. MEMS AE sensors are designed to detect active defects in materials with the transduction mechanisms of piezoresistivity, capacitance or piezoelectricity. The majority of MEMS AE sensors are designed as resonators to improve the signal-to-noise ratio. The fundamental design variables of MEMS AE sensors include resonant frequency, bandwidth/quality factor and sensitivity. Micromachining methods have the flexibility to tune the sensor frequency to a particular range, which is important, as the frequency of AE signal depends on defect modes, constitutive properties and structural composition. This paper summarizes the properties of MEMS AE sensors, their design specifications and applications for detecting the simulated and real AE sources and discusses the future outlook.  more » « less
Award ID(s):
2016444
PAR ID:
10230401
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied Sciences
Volume:
10
Issue:
24
ISSN:
2076-3417
Page Range / eLocation ID:
8966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a multi-frequency MEMS acoustic emission (AE) sensor is designed, characterized, and tested. The sensor includes sixteen individual resonators tuned in the range of 100 kHz to 700 kHz. The resonator frequencies are selected to form constructive interference when they are connected in parallel to increase the signal-to-noise ratio. Each resonator is comprised of a membrane that forms the mass and four beams that provide stiffness. The membrane size is kept the same for each resonator to have approximately the same sensitivity per frequency. The influence of spring elements on the resonant frequency and the sensitivity is numerically demonstrated. The sensor is manufactured using MEMSCAP PiezoMUMPs. The characterization experiments show a slight shift in the resonant frequency of individual resonators compared to the design values. The MEMS sensor is packaged using a custom-designed printed circuit board to improve the signal-to-noise ratio. The sensor performance is compared with a conventional AE sensor. The sensitivity and frequency bandwidth of the MEMS AE device is brought to a comparable level to bulky AE sensors. 
    more » « less
  2. Packaging electronic devices within electronic textiles and fibrous substrates requires an understanding of how fibers interact with circuit components in different operating conditions. In this paper, we use microeletromechanical (MEMS) devices to put devices in electrical contact with fine wires. We characterize the electronic properties of MEMS-to-wire contacts and discuss general guidelines for optimizing the design of these grippers and potential MEMS-based circuits. We then demonstrate how these grippers can act as non-rigid circuit components that effectively transfer power to devices such as LEDs. Analysis shows that our grippers are suitable conductors (under 150 Ohms) under standard operating temperatures (25-100 deg. C) with potential for use as sensors for current overflow or temperature. Methods such as parylene deposition and silver epoxy to stabilize MEMS performance are briefly discussed and explored. 
    more » « less
  3. Parametric resonances in a repulsive-force MEMS resonator are investigated. The repulsive force is generated through electrostatic fringe fields that arise from a specific electrode configuration. Because of the nature of the electrostatic force, parametric resonance occurs in this system and is predicted using Mathieu’s Equation. Governing equations of motion are solved using numerical shooting techniques and show both parametric and subharmonic resonance at twice the natural frequency. The primary instability tongue for parametric resonance is also mapped. This is of particular interest for MEMS sensors that require high signal-to-noise ratios due to the large oscillation amplitudes associated with parametric resonance. 
    more » « less
  4. Two solutions for improving MEMS triboelectric vibration sensors performance in contact‐separation mode are reported experimentally and analytically. Triboelectric sensors have mostly been studied in the mesoscale. The gap variation between the electrodes induces a potential difference that represents the external vibration. Miniaturizing the device limits the sensor output because of the limited gap. This work offers a warped MEMS diaphragm constrained on its edges. The dome‐shaped structure provides one order of magnitude larger displacement after contact‐separation than standard designs resulting in one order of magnitude greater voltage and signal‐to‐noise‐ratio. Second, micro triboelectric sensors do not operate unless the external vibration is sufficiently forceful to initiate contact between layers. The proposed constraints on the edge of the diaphragm provide friction during periodic motion and generate charges. The combination of the warped diaphragm and boundary constraints instead of serpentine springs increases the charge density and voltage generation. The mechanical properties and electrical output are thoroughly investigated including nonlinearity, sensitivity, and signal‐to‐noise ratio. A sensitivity of 250 mV/g and signal‐to‐noise‐ratio of 32 dB is provided by the presented device at resonance, which is very promising for event‐driven motion sensors because it does not require signal conditioning and therefore simplifies the sensing circuitry. 
    more » « less
  5. Microelectromechanical systems (MEMS) have emerged as highly attractive alternatives to conventional commercial off-the-shelf electronic sensors and systems due to their ability to offer miniature size, reduced weight, and low power consumption (i.e., SWaP advantages). These features make MEMS particularly appealing for a wide range of critical applications, including communication, biomedical, automotive, aerospace, and defense sectors. Resonant MEMS play crucial roles in these applications by providing precise timing references and channel selections for electronic devices, facilitating accurate filtering, mixing, synchronization, and tracking via their high stability and low phase noise. Additionally, they serve as key components in sensing applications, enabling detection and precise measurement of physical quantities for monitoring and control purposes across various fields. Temperature stability stands as a paramount performance specification for MEMS resonators and oscillators. It relates to the responsivity of a resonator's frequency to temperature variations and is typically quantified by the temperature coefficient of frequency (TCf). A constant and substantially large absolute TCf is preferred in MEMS temperature sensing applications, while a near-zero TCf is required for timing and other MEMS transducers that necessitate the decoupling of temperature effects on the resonance frequency. This comprehensive review aims to provide an in-depth overview of recent advancements in studying TCf in MEMS resonators. The review explores the compensation and engineering techniques employed across a range of resonator types, utilizing diverse materials. Various aspects are covered, including the design of MEMS resonators, theoretical analysis of TCf, temperature regulation techniques, and the metallization effect at high temperatures. The discussion encompasses TCf analysis of MEMS resonators operating in flexural, torsional, surface, and bulk modes, employing materials such as silicon (Si), lithium niobate (LiNbO3), silicon carbide (SiC), aluminum nitride (AlN), and gallium nitride (GaN). Furthermore, the review identifies areas that require continued development to fully exploit the TCf of MEMS resonators. 
    more » « less