Abstract Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, two of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies, in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
more »
« less
The Molecular Basis for Life in Extreme Environments
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure–function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
more »
« less
- Award ID(s):
- 1817845
- PAR ID:
- 10230421
- Date Published:
- Journal Name:
- Annual Review of Biophysics
- Volume:
- 50
- Issue:
- 1
- ISSN:
- 1936-122X
- Page Range / eLocation ID:
- 343 to 372
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soft material robots are uniquely suited to address engineering challenges in extreme environments in new ways that traditional rigid robot embodiments cannot. Soft robot material flexibility, resistance to brittle fracture, low thermal conductivity, biostability, and self-healing capabilities present new solutions advantageous to specific environmental conditions. In this review, we examine the requirements for building and operating soft robots in various extreme environments, including within the human body, underwater, outer space, search and rescue sites, and confined spaces. We analyze the implementations of soft robotic devices, including actuators and sensors, which meet these requirements. Besides the structure of these devices, we explore ways to expand the use of soft robots in extreme environments with design optimization, control systems, and their future applications in educational and commercial products. We further discuss the current limitations of soft robots recognizing challenges to compliance, strength, and control. With this in mind, we present arguments for the future of robotics in which hybrid (rigid and soft) structures meet complex environmental needs.more » « less
-
Peptide misfolding and aberrant assembly in membranous micro-environments have been associated with numerous neurodegenerative diseases. The biomolecular mechanisms and biophysical implications of these amyloid membrane interactions have been under extensive research and can assist in understanding disease pathogenesis and potential development of rational therapeutics. But, the complex nature and diversity of biomolecular interactions, structural transitions, and dependence on local environmental conditions have made accurate microscopic characterization challenging. In this review, using cases of Alzheimer's disease (amyloid-beta peptide), Parkinson's disease (alpha-synuclein peptide) and Huntington's disease (huntingtin protein), we illustrate existing challenges in experimental investigations and summarize recent relevant numerical simulation studies into amyloidogenic peptide–membrane interactions. In addition we project directions for future in silico studies and discuss shortcomings of current computational approaches.more » « less
-
Characterizing protein–surface and protein–nanoparticle conjugates: Activity, binding, and structureMany sensors and catalysts composed of proteins immobilized on inorganic materials have been reported over the past few decades. Despite some examples of functional protein–surface and protein–nanoparticle conjugates, thorough characterization of the biological–abiological interface at the heart of these materials and devices is often overlooked in lieu of demonstrating acceptable system performance. This has resulted in a focus on generating functioning protein-based devices without a concerted effort to develop reliable tools necessary to measure the fundamental properties of the bio–abio interface, such as surface concentration, biomolecular structure, and activity. In this Perspective, we discuss current methods used to characterize these critical properties of devices that operate by integrating a protein into both flat surfaces and nanoparticle materials. We highlight the advantages and drawbacks of each method as they relate to understanding the function of the protein–surface interface and explore the manner in which an informed understanding of this complex interaction leads directly to the advancement of protein-based materials and technology.more » « less
-
Abstract Understanding how future ocean conditions will affect populations of marine species is integral to predicting how climate change will impact both ecosystem function and fisheries management. Fish population dynamics are driven by variable survival of the early life stages, which are highly sensitive to environmental conditions. As global warming generates extreme ocean conditions (i.e., marine heatwaves) we can gain insight into how larval fish growth and mortality will change in warmer conditions. The California Current Large Marine Ecosystem experienced anomalous ocean warming from 2014 to 2016, creating novel conditions. We examined the otolith microstructure of juveniles of the economically and ecologically important black rockfish ( Sebastes melanops ) collected from 2013 to 2019 to quantify the implications of changing ocean conditions on early growth and survival. Our results demonstrated that fish growth and development were positively related to temperature, but survival to settlement was not directly related to ocean conditions. Instead, settlement had a dome-shaped relationship with growth, suggesting an optimal growth window. Our results demonstrated that the dramatic change in water temperature caused by such extreme warm water anomalies increased black rockfish growth in the larval stage; however, without sufficient prey or with high predator abundance these extreme conditions contributed to reduced survival.more » « less
An official website of the United States government

