skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Generative Modeling in Resource-Constrained Environments
Modern generative techniques, deriving realistic data from incomplete or noisy inputs, require massive computation for rigorous results. These limitations hinder generative techniques from being incorporated in systems in resource-constrained environment, thus motivating methods that grant users control over the time-quality trade-offs for a reasonable "payoff" of execution cost. Hence, as a new paradigm for adaptively organizing and employing recurrent networks, we propose an architectural design for generative modeling achieving flexible quality. We boost the overall efficiency by introducing non-recurrent layers into stacked recurrent architectures. Accordingly, we design the architecture with no redundant recurrent cells so we avoid unnecessary overhead.  more » « less
Award ID(s):
1763399 1945541 1521523
PAR ID:
10230440
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2021 Design, Automation, and Test in Europe Conference & Exhibition (DATE'21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative Adversarial Networks (GANs) have shown remarkable success in various generative design tasks, from topology optimization to material design, and shape parametrization. However, most generative design approaches based on GANs lack evaluation mechanisms to ensure the generation of diverse samples. In addition, no GAN-based generative design model incorporates user sentiments in the loss function to generate samples with high desirability from the aggregate perspectives of users. Motivated by these knowledge gaps, this paper builds and validates a novel GAN-based generative design model with an offline design evaluation function to generate samples that are not only realistic, but also diverse and desirable. A multimodal Data-driven Design Evaluation (DDE) model is developed to guide the generative process by automatically predicting user sentiments for the generated samples based on large-scale user reviews of previous designs. This paper incorporates DDE into the StyleGAN structure, a state-of-the-art GAN model, to enable data-driven generative processes that are innovative and user-centered. The results of experiments conducted on a large dataset of footwear products demonstrate the effectiveness of the proposed DDE-GAN in generating high-quality, diverse, and desirable concepts. 
    more » « less
  2. Cost-effective sensors are capable of real-time capturing a variety of air quality-related modalities from different pollutant concentrations to indoor/outdoor humidity and temperature. Machine learning (ML) models are capable of performing air-quality "ahead-of-time" approximations. Undoubtedly, accurate indoor air quality approximation significantly helps provide a healthy indoor environment, optimize associated energy consumption, and offer human comfort. However, it is crucial to design an ML architecture to capture the domain knowledge, so-called problem physics. In this study, we propose six novel physics-based ML models for accurate indoor pollutant concentration approximations. The proposed models include an adroit combination of state-space concepts in physics, Gated Recurrent Units, and Decomposition techniques. The proposed models were illustrated using data collected from five offices in a commercial building in California. The proposed models are shown to be less complex, computationally more efficient, and more accurate than similar state-of-the-art transformer-based models. The superiority of the proposed models is due to their relatively light architecture (computational efficiency) and, more importantly, their ability to capture the underlying highly nonlinear patterns embedded in the often contaminated sensor-collected indoor air quality temporal data. 
    more » « less
  3. Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method. 
    more » « less
  4. Abstract In this paper, we present a predictive and generative design approach for supporting the conceptual design of product shapes in 3D meshes. We develop a target-embedding variational autoencoder (TEVAE) neural network architecture, which consists of two modules: (1) a training module with two encoders and one decoder (E2D network) and (2) an application module performing the generative design of new 3D shapes and the prediction of a 3D shape from its silhouette. We demonstrate the utility and effectiveness of the proposed approach in the design of 3D car body and mugs. The results show that our approach can generate a large number of novel 3D shapes and successfully predict a 3D shape based on a single silhouette sketch. The resulting 3D shapes are watertight polygon meshes with high-quality surface details, which have better visualization than voxels and point clouds, and are ready for downstream engineering evaluation (e.g., drag coefficient) and prototyping (e.g., 3D printing). 
    more » « less
  5. The study of generative models is a promising branch of deep learning techniques, which has been successfully applied to different scenarios, such as Artificial Intelligence and the Internet of Things. While in most of the existing works, the generative models are realized as a centralized structure, raising the threats of security and privacy and the overburden of communication costs. Rare efforts have been committed to investigating distributed generative models, especially when the training data comes from multiple heterogeneous sources under realistic IoT settings. In this paper, to handle this challenging problem, we design a federated generative model framework that can learn a powerful generator for the hierarchical IoT systems. Particularly, our generative model framework can solve the problem of distributed data generation on multi-source heterogeneous data in two scenarios, i.e., feature related scenario and label related scenario. In addition, in our federated generative models, we develop a synchronous and an asynchronous updating methods to satisfy different application requirements. Extensive experiments on a simulated dataset and multiple real datasets are conducted to evaluate the data generation performance of our proposed generative models through comparison with the state-of-the-arts. 
    more » « less