skip to main content


Title: Novel Physics-Based Machine-Learning Models for Indoor Air Quality Approximations
Cost-effective sensors are capable of real-time capturing a variety of air quality-related modalities from different pollutant concentrations to indoor/outdoor humidity and temperature. Machine learning (ML) models are capable of performing air-quality "ahead-of-time" approximations. Undoubtedly, accurate indoor air quality approximation significantly helps provide a healthy indoor environment, optimize associated energy consumption, and offer human comfort. However, it is crucial to design an ML architecture to capture the domain knowledge, so-called problem physics. In this study, we propose six novel physics-based ML models for accurate indoor pollutant concentration approximations. The proposed models include an adroit combination of state-space concepts in physics, Gated Recurrent Units, and Decomposition techniques. The proposed models were illustrated using data collected from five offices in a commercial building in California. The proposed models are shown to be less complex, computationally more efficient, and more accurate than similar state-of-the-art transformer-based models. The superiority of the proposed models is due to their relatively light architecture (computational efficiency) and, more importantly, their ability to capture the underlying highly nonlinear patterns embedded in the often contaminated sensor-collected indoor air quality temporal data.  more » « less
Award ID(s):
1922666
PAR ID:
10542100
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2308.01438
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Opportunistic Physics-mining Transfer Mapping Architecture (OPTMA) is a hybrid architecture that combines fast simplified physics models with neural networks in order to provide significantly improved generalizability and explainability compared to pure data-driven machine learning (ML) models. However, training OPTMA remains computationally inefficient due to its dependence on gradient-free solvers or back-propagation with supervised learning over expensively pre-generated labels. This paper presents two extensions of OPTMA that are not only more efficient to train through standard back-propagation but are readily deployable through the state-of-the-art library, PyTorch. The first extension, OPTMA-Net, presents novel manual reprogramming of the simplified physics model, expressing it in Torch tensor compatible form, thus naturally enabling PyTorch's in-built Auto-Differentiation to be used for training. Since manual reprogramming can be tedious for some physics models, a second extension called OPTMA-Dual is presented, where a highly accurate internal neural net is trained apriori on the fast simplified physics model (which can be generously sampled), and integrated with the transfer model. Both new architectures are tested on analytical test problems and the problem of predicting the acoustic field of an unmanned aerial vehicle. The interference of the acoustic pressure waves produced by multiple monopoles form the basis of the simplified physics for this problem statement. An indoor noise monitoring setup in motion capture environment provided the ground truth for target data. Compared to sequential hybrid and pure ML models, OPTMA-Net/Dual demonstrate several fold improvement in performing extrapolation, while providing orders of magnitude faster training times compared to the original OPTMA. 
    more » « less
  2. — In this paper, we first develop a low-cost surfacebased air pollutants measurement system for the real-time air pollution monitoring and forecasting applications. Then, we compare the performance achieved by the proposed system in real-time urban environment with currently used static monitoring stations by the governmental environmental protection agency (EPA). The proposed design uses particulate matter, humidity, and temperature sensors to measure the values of the air pollutant that determines the value of the Air Quality Index (AQI). The SD storage device is interfaced with the system to store the large amount of data sensed by the system. The Arduino UNO-based processing unit integrates with the sensing units to process and control the sensed air pollutants data. The proposed system is deployed in indoors and outdoor environment in under served minority communities in big cities to illustrate real-time environmental pollution measurement and monitoring applications. The system can measure, monitor and alert the level of PM2.5 and PM10 components of the AQI as they are often the main pollutant that determines the AQI value. The performance of the proposed system compares with the expensive data logger-based EPA-approved LDEQ sensorsbased air quality monitoring system. Our analysis shows that the measurement and monitoring performance of the proposed system is comparable with the EPA-approved LDEQ sensorsbased air quality monitoring system. The analysis also shows that there is a spatial and temporal variation of PM2.5 and PM10 values even for sites that are less than a mile apart. The interaction interphase of the system is simpler and easier to use as compared with bulky display systems in traditional EPA-based monitoring systems. In contrast with the traditional data logger-based system, the proposed system is smaller and quicker to deploy to test specific air pollutants in interested urban and rural locations . 
    more » « less
  3. Indoor localization is a challenging task. Compared to outdoor environments where GPS is dominant, there is no robust and almost-universal approach. Recently, machine learning (ML) has emerged as the most promising approach for achieving accurate indoor localization. Nevertheless, its main challenge is requiring large datasets to train the neural networks. The data collection procedure is costly and laborious, requiring extensive measurements and labeling processes for different indoor environments. The situation can be improved by Data Augmentation (DA), a general framework to enlarge the datasets for ML, making ML systems more robust and increasing their generalization capabilities. This paper proposes two simple yet surprisingly effective DA algorithms for channel state information (CSI) based indoor localization motivated by physical considerations. We show that the number of measurements for a given accuracy requirement may be decreased by an order of magnitude. Specifically, we demonstrate the algorithms’ effectiveness by experiments conducted with a measured indoor WiFi measurement dataset: As little as 10% of the original dataset size is enough to get the same performance as the original dataset. We also showed that if we further augment the dataset with the proposed techniques, test accuracy is improved more than three-fold. 
    more » « less
  4. Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework calledFedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy.FedHILintegrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show thatFedHILoutperforms state-of-the-art FL and non-FL indoor localization frameworks.FedHILis able to achieve 1.62 × better localization accuracy on average than the best performing FL-based indoor localization framework from prior work.

     
    more » « less
  5. This paper presents an algorithm for restoring AC power flow feasibility from solutions to simplified optimal power flow (OPF) problems, including convex relaxations, power flow approximations, and machine learning (ML) models. The proposed algorithm employs a state estimation-based post-processing technique in which voltage phasors, power injections, and line flows from solutions to relaxed, approximated, or ML-based OPF problems are treated similarly to noisy measurements in a state estimation algorithm. The algorithm leverages information from various quantities to obtain feasible voltage phasors and power injections that satisfy the AC power flow equations. Weight and bias parameters are computed offline using an adaptive stochastic gradient descent method. By automatically learning the trustworthiness of various outputs from simplified OPF problems, these parameters inform the online computations of the state estimation-based algorithm to both recover feasible solutions and characterize the performance of power flow approximations, relaxations, and ML models. Furthermore, the proposed algorithm can simultaneously utilize combined solutions from different relaxations, approximations, and ML models to enhance performance. Case studies demonstrate the effectiveness and scalability of the proposed algorithm, with solutions that are both AC power flow feasible and much closer to the true AC OPF solutions than alternative methods, often by several orders of magnitude in the squared two-norm loss function. 
    more » « less