skip to main content


Title: Halogen Bearing Amphiboles, Aqueous Fluids, and Melts in Subduction Zones: Insights on Halogen Cycle From Electrical Conductivity
Abstract

Amphiboles are hydrous minerals that are formed in the oceanic crust via hydrothermal alteration. The partial substitution of halogens for OHmakes amphibole one of the principal hosts of Cl and F in the subducting slab. In this study, we investigated the electrical conductivity of a suite of halogen bearing amphibole minerals at 1.5 GPa up to 1,400 K. The discontinuous electrical behavior indicates dehydration of amphibole at ∼915 K. This is followed by dehydration induced hydrous melting at temperatures above 1,070 K. We find that the released aqueous fluids have an electrical conductivity of ∼0.1 S/m. This high electrical conductivity is likely to explain anomalously high electrical conductivity observed in certain subduction zone settings. This high electrical conductivity of an order of magnitude greater than the electrical conductivity of pure aqueous fluids at similar conditions is likely due to the partitioning of the F and Cl into the aqueous fluids. We also noted that subsequent to the dehydration, secondary phases form due to the breakdown of the primary halogen bearing amphibole. Chemical analyses of these secondary phases indicate that they are repositories of F and Cl. Hence, we infer that upon dehydration of the primary halogen bearing amphibole, first the F and Cl are partitioned into the aqueous fluids and then the halogens are partitioned back to the secondary mineral phases. These secondary minerals are likely to transport the halogen to the deep Earth and may in part explain the halogen concentration observed in ocean island basalt.

 
more » « less
Award ID(s):
1753125 1763215
NSF-PAR ID:
10450174
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A plausible origin of the seismically observed mid-lithospheric discontinuity (MLD) in the subcontinental lithosphere is mantle metasomatism. The metasomatized mantle is likely to stabilize hydrous phases such as amphiboles. The existing electrical conductivity data on amphiboles vary significantly. The electrical conductivity of hornblendite is much higher than that of tremolite. Thus, if hornblendite truly represents the amphibole varieties in MLD regions, then it is likely that amphibole will cause high electrical conductivity anomalies at MLD depths. However, this is inconsistent with the magnetotelluric observations across MLD depths. Hence, to better understand this discrepancy in electrical conductivity data of amphiboles and to evaluate whether MLD could be caused by metasomatism, we determined the electrical conductivity of a natural metasomatized rock sample. The metasomatized rock sample consists of ~87% diopside pyroxene, ~9% sodium-bearing tremolite amphibole, and ~3% albite feldspar. We collected the electrical conductivity data at ~3.0 GPa, i.e., the depth relevant to MLD. We also spanned a temperature range between 400 to 1000 K. We found that the electrical conductivity of this metasomatized rock sample increases with temperature. The temperature dependence of the electrical conductivity exhibits two distinct regimes. At low temperatures <700 K, the electrical conductivity is dominated by the conduction in the solid state. At temperatures >775 K, the conductivity increases, and it is likely to be dominated by the conduction of aqueous fluids due to partial dehydration. The main distinction between the current study and the prior studies on the electrical conductivity of amphiboles or amphibole-bearing rocks is the sodium (Na) content in amphiboles of the assemblage. Moreover, it is likely that the higher Na content in amphiboles leads to higher electrical conductivity. Pargasite and edenite amphiboles are the most common amphibole varieties in the metasomatized mantle, and our study on Na-bearing tremolite is the closest analog of these amphiboles. Comparison of the electrical conductivity results with the magnetotelluric observations constrains the amphibole abundance at MLD depths to <1.5%. Such a low-modal proportion of amphiboles could only reduce the seismic shear wave velocity by 0.4–0.5%, which is significantly lower than the observed velocity reduction of 2–6%. Thus, it might be challenging to explain both seismic and magnetotelluric observations at MLD simultaneously. 
    more » « less
  2. Abstract Inclusions of relic high-pressure melts provide crucial information on the fate of crustal rocks in the deep roots of orogens during collision and crustal thickening, including at extreme temperature conditions exceeding 1000 °C. However, discoveries of high-pressure melt inclusions are still a relative rarity among case studies of inclusions in metamorphic minerals. Here we present the results of experimental and microchemical investigations of nanogranitoids in garnets from the felsic granulites of the Central Maine Terrane (Connecticut, U.S.A.). Their successful experimental re-homogenization at ~2 GPa confirms that they originally were trapped portions of deep melts and makes them the first direct evidence of high pressure during peak metamorphism and melting for these felsic granulites. The trapped melt has a hydrous, granitic, and peraluminous character typical of crustal melts from metapelites. This melt is higher in mafic components (FeO and MgO) than most of the nanogranitoids investigated previously, likely the result of the extreme melting temperatures—well above 1000 °C. This is the first natural evidence of the positive correlation between temperature and mafic character of the melt; a trend previously supported only by experimental evidence. Moreover, it poses a severe caveat against the common assumption that partial melts from metasediments at depth are always leucogranitic in composition. NanoSIMS measurement on re-homogenized inclusions show significant amounts of CO2, Cl, and F. Halogen abundance in the melt is considered to be a proxy for the presence of brines (strongly saline fluids) at depth. Brines are known to shift the melting temperatures of the system toward higher values and may have been responsible for delaying melt production via biotite dehydration melting until these rocks reached extreme temperatures of more than 1000 °C, rather than 800–850 °C as commonly observed for these reactions. 
    more » « less
  3. The large range in oxidation states of sulfur (-II to +VI) provides it with a large oxidation potential in rocks, even at relatively low concentrations. Most importantly, the transition from sulfide to sulfate species in rocks and silicate melts occurs in the same approximate fO2 region (for a given temperature) as the transition from ferrous to ferric iron, and reduced S species can coexist with oxidized Fe and vice versa. The result is a large potential for reactions involving sulfur to oxidize or reduce Fe in silicate minerals, since Fe only occurs in two oxidation states (+II and +III). In order for sulfur to be released during slab dehydration, sulfur in sulfide must be converted into an easily dissolved species, such as SO42− or H2S, through either oxidation or reduction. We propose that oxidation of sulfur in sulfide follows the generalized reaction: 8Fe3+SiaOb(OH)c +S2− = 8Fe2+SidOe +SO42− +(H2O)f (1) In this type of reaction, sulfur participates in the dehydration of greenschist- or blueschist-facies hydrous silicates during transition to the eclogite facies: ferric Fe in Fe-bearing silicates (chlorite, amphibole, epidote) is reduced to ferrous Fe in anhydrous ferromagnesian silicates (pyroxene, garnet). At the same time, the reaction consumes sulfide by oxidation of S2− to produce SO42−, which is readily dissolved in the fluid produced during dehydration. Additionally, a similar redox reaction could oxidize sulfur by reducing ferric Fe in oxides. It is important to note that one mole of S has the same redox potential as 8 moles of Fe. The molar ratio of 8 moles of Fe per 1 mole of S translates to a mass ratio of approximately 14; therefore, small concentrations of sulfur can have a large impact on reduction/oxidation of the silicate assemblage. Our observations show that sulfide minerals that can be identified as primary or related to the peak metamorphic stage are rare in eclogites and restricted to inclusions in garnet, consistent with reaction (1). Thermodynamic modeling is currently underway to assess the influence of sulfur on the phase equilibria of silicate phases during high pressure metamorphism. 
    more » « less
  4. Abstract

    The transition between blueschist and eclogite plays an important role in subduction zones via dehydration and densification processes in descending oceanic slabs. There are a number of previous petrological studies describing potential mineral reactions taking place at the transition. An experimental determination of such reactions could help constrain the pressure–temperature conditions of the transition as well as the processes of dehydration. However, previous experimental contributions have focused on the stability of spontaneously formed hydrous minerals in basaltic compositions rather than on reactions among already formed blueschist facies minerals. Therefore, this study conducted three groups of experiments to explore the metamorphic reactions among blueschist facies minerals at conditions corresponding to warm subduction, where faster reaction rates are possible on the time scale of laboratory experiments. The first group of experiments was to establish experimental reversals of the reaction glaucophane+paragonite to jadeite+pyrope+quartz+H2O over the range of 2.2–3.5 GPa and 650–820°C. This reaction has long been treated as key to the blueschist–eclogite transition. However, only the growth of glaucophane+paragonite was observed at the intersectional stability field of both paragonite and jadeite+quartz, confirming thermodynamic calculations that the reaction is not stable in the system Na2O–MgO–Al2O3–SiO2–H2O. The second set of experiments involved unreversed experiments using glaucophane+zoisite ±quartz in low‐Fe and Ca‐rich systems and were run at 1.8–2.4 GPa and 600–780°C. These produced omphacite+paragonite/kyanite+H2O accompanied by compositional shifts in the sodium amphibole, glaucophane, towards sodium–calcium amphiboles such as winchite (☐(CaNa)(Mg4Al)Si8O22(OH)2) and barroisite (☐(CaNa)(Mg3Al2)(AlSi7)O22(OH)2). This suggests that a two‐step dehydration occurs, first involving the breakdown of glaucophane+zoisite towards a paragonite‐bearing assemblage, then the breakdown of paragonite to release H2O. It also indicates that sodium–calcium amphibole can coexist with eclogite phases, thereby extending the thermal stability of amphibole to greater subduction zone depths. The third set of experiments was an experimental investigation at 2.0–2.4 GPa and 630–850°C involving a high‐Fe (Fe#=Fetotal/(Fetotal+Mg)≈0.36) natural glaucophane, synthetic paragonite and their eclogite‐forming reaction products. The results indicated that garnet and omphacite grew over most of these pressure–temperature conditions, which demonstrates the importance of Fe‐rich glaucophane in forming the key eclogite assemblage of garnet+omphacite, even under warm subduction zone conditions. Based on the experiments of this study, reaction between glaucophane+zoisite is instrumental in controlling dehydration processes at the blueschist–eclogite transition during warm subduction.

     
    more » « less
  5. Abstract

    The accessory minerals rutile and apatite are rare or absent in the convecting upper mantle but occur in shallow, cooler, metasomatized continental lithospheric mantle (CLM) where they serve as carrier phases for the trace elements Ta (in rutile) and Th (in apatite). Because both minerals crystallize near‐solidus and are eliminated early during partial mantle melting, the relative abundances of rutile and apatite should control the Ta and Th abundances of mantle melts and provide a means of identifying the involvement of rutile‐ and/or apatite‐bearing metasomatized CLM in mafic continental magmatism. As a test, we investigated published Ta and Th abundances data from ~2,000 whole‐rock samples of mafic to intermediate composition, Cenozoic volcanic rocks in southwestern North America. Roughly half of the samples have Ta/Th values similar to those of island arc volcanic rocks (<0.2) or ocean island and mid‐ocean ridge basalts (>0.6). The remaining samples have intermediate and variable Ta/Th values between 0.2 and 0.6, independent of specific indices of crustal interaction (e.g., wt% P2O5/wt% K2O). We interpret the intermediate Ta/Th rocks as the products of direct melting of, or of extensive melt‐rock interaction with, rutile‐ and/or apatite‐bearing CLM. Intermediate Ta/Th rocks also have uniformly high87Sr/86Sr (0.706 to 0.708) compared to oceanic basalts that, unlike their Nd isotopic compositions, do not covary with lithospheric age. These observations are consistent with widespread metasomatism of the CLM by Sr‐rich, Nd‐poor, aqueous fluids generated by dehydration of oceanic lithosphere, and its overlying tectonic mélange during early Cenozoic subduction beneath southwestern North America.

     
    more » « less