skip to main content


Title: Identifying Metasomatized Continental Lithospheric Mantle Involvement in Cenozoic Magmatism From Ta/Th Values, Southwestern North America
Abstract

The accessory minerals rutile and apatite are rare or absent in the convecting upper mantle but occur in shallow, cooler, metasomatized continental lithospheric mantle (CLM) where they serve as carrier phases for the trace elements Ta (in rutile) and Th (in apatite). Because both minerals crystallize near‐solidus and are eliminated early during partial mantle melting, the relative abundances of rutile and apatite should control the Ta and Th abundances of mantle melts and provide a means of identifying the involvement of rutile‐ and/or apatite‐bearing metasomatized CLM in mafic continental magmatism. As a test, we investigated published Ta and Th abundances data from ~2,000 whole‐rock samples of mafic to intermediate composition, Cenozoic volcanic rocks in southwestern North America. Roughly half of the samples have Ta/Th values similar to those of island arc volcanic rocks (<0.2) or ocean island and mid‐ocean ridge basalts (>0.6). The remaining samples have intermediate and variable Ta/Th values between 0.2 and 0.6, independent of specific indices of crustal interaction (e.g., wt% P2O5/wt% K2O). We interpret the intermediate Ta/Th rocks as the products of direct melting of, or of extensive melt‐rock interaction with, rutile‐ and/or apatite‐bearing CLM. Intermediate Ta/Th rocks also have uniformly high87Sr/86Sr (0.706 to 0.708) compared to oceanic basalts that, unlike their Nd isotopic compositions, do not covary with lithospheric age. These observations are consistent with widespread metasomatism of the CLM by Sr‐rich, Nd‐poor, aqueous fluids generated by dehydration of oceanic lithosphere, and its overlying tectonic mélange during early Cenozoic subduction beneath southwestern North America.

 
more » « less
NSF-PAR ID:
10454452
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
21
Issue:
5
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Young mafic lavas from the East African Western Rift record melting of subcontinental lithospheric mantle that was metasomatically modified by multiple tectonic events. We report new isotope data from monogenetic cinder cones near Bufumbira, Uganda, in the Virunga Volcanic Field:87Sr/86Sr = 0.7059–0.7079,εNd = −6.5 to −1.3,εHf = −6.3 to +0.9,208Pb/204Pb = 40.1–40.7,207Pb/204Pb = 15.68–15.75, and206Pb/204Pb = 19.27–19.45. Olivine phenocrysts from the Bufumbira lavas have3He/4He = 6.0–7.4RA. The isotopic data, in conjunction with major and trace element systematics, indicate that primitive Bufumbira magmas are derived from two different metasomatized lithospheric source domains. Melts generated by lower degrees of melting record greater contributions from ∼1 to 2 Ga isotopically enriched garnet‐amphibole‐phlogopite pyroxenite veins within the lithosphere. As melting progresses, these vein melts become increasingly diluted by melts that originate near the lithosphere/asthenosphere boundary, shifting the isotopic compositions toward the common lithospheric mantle (CLM) proposed by Furman and Graham (1999,https://doi.org/10.1016/s0024-4937(99)00031-6). This ∼450–500 Ma source domain appears to underlie all Western Rift volcanic provinces and is characterized by87Sr/86Sr ∼ 0.705,εNd∼ 0,εHf∼ +1 to +3,206Pb/204Pb ∼ 19.0–19.2,208Pb/204Pb ∼ 39.7, and3He/4He ∼ 7RA. Basal portions of the dense subcontinental lithospheric mantle may become gravitationally unstable and founder into underlying warmer asthenosphere, exposing surfaces where melting of locally heterogeneous veins produces small‐volume, alkaline mafic melts. Mafic lavas from all Western Rift volcanic provinces record mixing between the CLM and locally variable metasomatized source domains, suggesting this style of melt generation is fundamental to the development of magma‐poor rifts.

     
    more » « less
  2. null (Ed.)
    Abstract Mantle source heterogeneity and magmatic processes have been widely studied beneath most parts of the Southwest Indian Ridge (SWIR). But less is known from the newly recovered mid-ocean ridge basalts from the Dragon Bone Amagmatic Segment (53°E, SWIR) and the adjacent magmatically robust Dragon Flag Segment. Fresh basalt glasses from the Dragon Bone Segment are clearly more enriched in isotopic composition than the adjacent Dragon Flag basalts, but the trace element ratios of the Dragon Flag basalts are more extreme compared with average mid-ocean ridge basalts (MORB) than the Dragon Bone basalts. Their geochemical differences can be explained only by source differences rather than by variations in degree of melting of a roughly similar source. The Dragon Flag basalts are influenced by an arc-like mantle component as evidenced by enrichment in fluid-mobile over fluid-immobile elements. However, the sub-ridge mantle at the Dragon Flag Segment is depleted in melt component compared with a normal MORB source owing to previous melting in the subarc. This fluid-metasomatized, subarc depleted mantle is entrained beneath the Dragon Flag Segment. In comparison, for the Dragon Bone axial basalts, their Pb isotopic compositions and their slight enrichment in Ba, Nb, Ta, K, La, Sr and Zr and depletion in Pb and Ti concentrations show resemblance to the Ejeda–Bekily dikes of Madagascar. Also, Dragon Bone Sr and Nd isotopic compositions together with the Ce/Pb, La/Nb and La/Th ratios can be modeled by mixing the most isotopically depleted Dragon Flag basalts with a composition within the range of the Ejeda–Bekily dikes. It is therefore proposed that the Dragon Bone axial basalts, similar to the Ejeda–Bekily dikes, are sourced from subcontinental lithospheric Archean mantle beneath Gondwana, pulled from beneath the Madagascar Plateau. The recycling of the residual subarc mantle and the subcontinental lithospheric mantle could be related to either the breakup of Gondwana or the formation and accretion of Neoproterozoic island arc terranes during the collapse of the Mozambique Ocean, and is now present beneath the ridge. 
    more » « less
  3. PhD Dissertation Abstract: The imposing andesite stratovolcano is the characteristic expression of subduction zone magmatism, posing hazards to coastal populations and bearing insight into deep Earth processes. On a map of a typical volcanic arc, one can easily distinguish the approximately linear alignment and regular spacing of these major edifices that stand out from a diffuse distribution of mafic volcanoes (e.g. the Quaternary Cascades; Hildreth, 2007). The andesitic composite volcanoes have a reputation for being complex, open systems: crystal zoning “stratigraphies,” diverse crystal cargoes including antecrysts or xenocrysts, quenched magmatic inclusions, and variations in isotopic signatures are among the many lines of evidence that these systems involve a variety of igneous processes and melt sources. To investigate the development and evolution of such transcrustal magma factories, I have conducted a detailed temporal, spatial, and geochemical characterization of a long-lived arc volcanic center in the southern Washington Cascades, the Goat Rocks volcanic complex. Results from ⁴⁰Ar/³⁹Ar and U/Pb geochronology constrain the lifespan of the Goat Rocks volcanic complex from ~3.1 Ma to ~100 ka. During this time, four major composite volcanoes were built (as well as several smaller volcanoes). From oldest to youngest, these are Tieton Peak, Bear Creek Mountain, Lake Creek volcano, and Old Snowy Mountain. Four volcanic stages are defined based on the lifespans of these centers and distinct compositional changes that occur from one to the next: Tieton Peak stage (3.1-2.6 Ma), Bear Creek Mountain stage (1.6-1.1 Ma), Lake Creek stage (1.1 Ma to 456 ka), and Old Snowy Mountain stage (440 ka to 115 ka). Two lava flow remnants also have ages in the interim between Tieton Peak stage and Bear Creek Mountain stage (2.3 Ma and 2.1 Ma), and their sources are not yet identified. The ages of the Bear Creek Mountain and Lake Creek stages in fact overlap, and the gap between Lake Creek stage and Old Snowy Mountain stage is only on the order of 10⁴ years. Based on supporting compositional evidence, the Bear Creek Mountain, Lake Creek, and Old Snowy Mountain stage volcanoes are considered to be the migrating surface expressions of a continuous magmatic system that was active over at least ~1.5 million years. It remains uncertain whether the gaps between the Tieton Peak stage, scattered early Pleistocene andesites, and Bear Creek Mountain stage are due to incomplete exposure/sampling or real quiescent periods earlier in the development of the Goat Rocks volcanic complex. Throughout the construction of the andesitic complex, mafic volcanoes were active on its periphery. These include the Miriam Creek volcano (~3.6-3.1 Ma), Devils Washbasin volcano (3.0-2.7 Ma), Hogback Mountain (1.1 Ma – 891 ka), Lakeview Mountain (194 ka), and Walupt Lake volcano (65 ka). Two basalt and basaltic andesite units (Qob₁ and Qob₂, 1.4 and 1.3 Ma; Hammond, 2017) also erupted from the Goat Rocks area, likely an older incarnation of Hogback Mountain. The suite of mafic magmas erupted in this region are all calcalkaline basalt (or basaltic andesite; CAB), but two compositional groups emerge from the trace element and isotopic data. Group 1 is LILE and LREE-enriched, with higher ⁸⁷Sr/⁸⁶Sr isotopes, and includes compositions from Devils Washbasin, Lower Hogback Mountain, and Lakeview Mountain. Group 2 is less enriched in LILE and LREE and lower in ⁸⁷Sr/⁸⁶Sr, and includes the compositions of Miriam Creek, Qob1, Upper Hogback Mountain, Walupt Lake, and Coleman Weedpatch. The two groups are recurrent through time and with no geographic distinction; in fact, both types were tapped by the Hogback Mountain volcano. Together both of these groups, alongside CABs from Mount Adams and various basalts from Mount St. Helens, form a compositional array between the basalts of the High Cascades and the intraplate-type basalts (IPB) of Mount Adams and Simcoe volcanic field. These results lead to three conclusions. 1) Variably subduction-modified mantle is distributed across the region, perhaps either as stratified layers or a web-like network of fluid pathways amongst less metasomatized mantle. 2) Transitional compositions between the IPBs and typical “High Cascades” CAB/HAOT signature suggest a broader influence of the mantle domain that feeds IPBs—if asthenospheric mantle through a slab window, as suggested by Mullen et al. (2017), then perhaps it bleeds in smaller quantities over a broader area. This compositional trend solidifies the interpretation of the southern Washington Cascades as a unique and coherent “segment” of the arc (the Washington segment of Pitcher and Kent, 2019). 3) The recurrence of variable mafic magma types through time, and with no geographic boundaries, indicates that the compositional evolution of the Goat Rocks volcanic complex was not likely driven by a change in mafic input. Indeed, the Sr, Nd, Hf, and Pb isotope ratios of the intermediate to felsic suite are closely aligned with the local basalts and suggest a limited role of crustal assimilation. Importantly, several mineral thermometers (zircon, ilmenite-magnetite pairs, and amphibole) align in recording higher crystallization temperatures in Bear Creek Mountain to early Lake Creek time, a cooling trend through the Lake Creek stage, and a more diverse range of temperatures in the transition to Old Snowy Mountain stage. Thus, it is suggested that the compositional evolution at Goat Rocks represents a thermal cycle of waxing and waning magmatic flux: where the period of Bear Creek Mountain to early Lake Creek volcanism was the climactic phase of a vertically extensive magma homogenization factory, then the system waned and cooled, ultimately losing its ability to filter, homogenize, and enrich magmas. 
    more » « less
  4. Abstract

    The Payenia region of Argentina (34.5–38°S) is a large Pliocene‐Quaternary volcanic province of basaltic compositions in the Andean Cordillera foothills representing the northernmost extent of back‐arc volcanism in the Andean Southern Volcanic Zone (SVZ). Although the chemical diversity of the Payenia basalts has been characterized previously, the processes and sources responsible for such variation remain controversial. Here, we report new whole‐rock major and trace element concentrations, Sr‐, Nd‐, Hf‐, and Pb‐isotope ratios and high‐precision olivine oxygen‐isotope ratios in a suite of 35 alkaline basalts from Payenia. These lavas have major and trace elements that define a compositional range from arc‐influenced to intraplate signature. Variable crustal contamination and/or recent slab‐derived inputs inadequately account for elemental and isotopic systematics and spatial compositional variations of Payenia lavas. We present a simple forward model indicating that early metasomatism and subsequent melting of the metasomatized subcontinental lithospheric mantle (SCLM) has significantly contributed to the Payenia lava compositional range. Isotopic ingrowth calculations of radiogenic Sr, Nd, Hf, and Pb suggest that the SCLM metasomatism occurred at 50–150 Ma, consistent with the timing of the breakup of Gondwana and the development of the proto‐Pacific Andean arc. Variations in δ18Oolivinevalues from modeled melts indicate that the metasomatism and melting within the SCLM can fractionate oxygen isotopes even when the metasomatizing melt has MORB‐like δ18O values, providing a different explanation for the low‐δ18O signatures observed in continental arc settings.

     
    more » « less
  5. The Gejiu alkaline complex (GAC) within the western part of the Youjiang Basin provides a window to investigate the evolution in the junction of Cathaysia, Yangtze and Indochina blocks. Here, we investigate the GAC in terms of their petrology, zircon U–Pb geochronology, whole‐rock geochemistry, and Sr–Nd isotopic data to gain insights into the origin and evolution of the alkaline magma. The GAC is lithologically composed of alkali syenites and feldspathoid syenites, in which some were altered into sericite syenites. Zircon U–Pb dating of the alkali syenites yielded an age of 85.03 ± 0.47 Ma, which is slightly older than the feldspathoid syenites. The alkali syenites and feldspathoid syenites are silica‐saturated and silica‐undersaturated, respectively, and are characterized by high alkalinity with K2O + Na2O of 11.55–17.08 wt% and Al2O3of 18.57–22.49 wt%, low MgO of 0.11–1.39 wt%, weakly negative Eu anomalies, enrichments of LILEs such as Th and U, HFSEs like Zr and Hf but depletion of Ba, Sr, Nb, Ta, P, Ti, strongly fractionated LREEs to HREEs. Their uniform Sr–Nd isotope composition with initial87Sr/86Sr = 0.708802–0.710571 andεNd(t) = −7.1 to −6.6 indicates that they were products of a homologous magma. They crystallized atc. 810–956°C and have a relatively high magmatic oxygen fugacity. Our geochemical and isotopic data proved that the GAC magma was derived from the low‐degree partial melting (<10%) of a phlogopite‐bearing‐enriched mantle that was metasomatized by subducting sediments and originated possibly from the spinel and garnet transition zone at a depth of 60–80 km and a pressure of about 1.8–2.4 Gpa. The primary magma experienced protracted two‐stage crystal fractionation of clinopyroxene+amphibole and biotite+K‐feldspar, forming alkali syenites and feldspathoid syenites. Crustal contamination plays a negligible role in their formation. Considering previous tectonic studies, it was therefore proposed that the GAC formed in an extensional tectonic setting related to the Neo‐Tethyan tectonic regions during the Late Cretaceous.

     
    more » « less