ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1-d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $$\tilde{\chi }_{\rm eff} \approx 0.0$$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $$\tilde{q} \sim 0.5\!-\!0.7$$, (4) the maximum merger mass in the bulk is $$\sim 100\!-\!200\, \mathrm{M}_{\odot }$$, (5) $$\sim 1{{\ \rm per\ cent}}$$ of bulk mergers involve BH $$\gt 50\, \mathrm{M}_{\odot }$$ with (6) $$\simeq 80{{\ \rm per\ cent}}$$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $$\tilde{q}\sim 0.1$$. Ongoing LIGO non-detections of black holes $$\gt 10^{2}\, \mathrm{M}_{\odot }$$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs are relatively short-lived (≤1 Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time.
more »
« less
Black hole, neutron star, and white dwarf merger rates in AGN discs
ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs are $$\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is $${R}_{\mathrm{ BH}\!-\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{-3}\, \rm {yr}^{-1},({\mathit{ R}}_{NS\!-\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{-3}\, \rm {yr}^{-1}$$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratios derived from LIGO can restrict models of MF, mass segregation, and populations embedded in AGN discs. The expected number of electromagnetic (EM) counterparts to NS–BH mergers in AGN discs at z < 1 is $$\sim [30,900]\, {\rm {yr}}^{-1}(f_{\mathrm{ AGN}}/0.1)$$. EM searches for flaring events in large AGN surveys will complement LIGO constraints on AGN models and the embedded populations that must live in them.
more »
« less
- Award ID(s):
- 1909534
- PAR ID:
- 10230599
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 498
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4088 to 4094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Galactic nuclei are promising sites for stellar origin black hole (BH) mergers, as part of merger hierarchies in deep potential wells. We show that binary black hole (BBH) merger rates in active galactic nuclei (AGNs) should always exceed merger rates in quiescent galactic nuclei (nuclear star clusters, NSCs) around supermassive black holes (SMBHs) without accretion discs. This is primarily due to average binary lifetimes in AGNs that are significantly shorter than those in NSCs. The lifetime difference comes from rapid hardening of BBHs in AGNs, such that their semimajor axes are smaller than the hard–soft boundary of their parent NSC; this contrasts with the large average lifetime to merger for BBHs in NSCs around SMBHs, due to binary ionization mechanisms. Secondarily, merger rates in AGNs are enhanced by gas-driven binary formation mechanisms. Formation of new BHs in AGN discs is a minor contributor to the rate differences. With the gravitational wave detection of several BBHs with at least one progenitor in the upper mass gap, and signatures of dynamical formation channels in the χeff distribution, we argue that AGNs could contribute $$\sim 25{\!-\!}80{{\ \rm per\ cent}}$$ of the LIGO–Virgo measured rate of $$\sim 24\, \rm {Gpc}^{-3} \rm {yr}^{-1}$$.more » « less
-
ABSTRACT Tidal disruption events (TDEs) are routinely observed in quiescent galaxies, as stars from the nuclear star cluster are scattered into the loss cone of the central supermassive black hole (SMBH). TDEs are also expected to occur in active galactic nuclei (AGNs), due to scattering or orbital eccentricity pumping of stars embedded in the innermost regions of the AGN accretion disc. Encounters with embedded stellar-mass black holes (BH) can result in AGN μTDEs. AGN TDEs and μTDEs could therefore account for a fraction of observed AGN variability. Here, by performing scattering experiments with the few-body code SpaceHub, we compute the probability of AGN TDEs and μTDEs as a result of 3-body interactions between stars and binary BHs. We find that AGN TDEs are more probable during the early life of the AGNs, when rates are $$\sim (6\times 10^{-5}-5 \times 10^{-2}) (f_\bullet /0.01)\, \rm {AGN}^{-1}$$ yr−1 (where f• is the ratio between the number density of BHs and stars), generally higher than in quiescent galactic nuclei. By contrast, μTDEs should occur throughout the AGN lifetime at a rate of $$\sim (1\times 10^{-4} - 4\times 10^{-2})(f_\bullet /0.01)\, \rm {AGN}^{-1}$$ yr−1. Detection and characterization of AGN TDEs and μAGN TDEs with future surveys using Rubin and Roman will help constrain the populations of stars and compact objects embedded in AGN discs, a key input for the LVK AGN channel.more » « less
-
ABSTRACT Recent gravitational wave (GW) observations by LIGO/Virgo show evidence for hierarchical mergers, where the merging BHs are the remnants of previous BH merger events. These events may carry important clues about the astrophysical host environments of the GW sources. In this paper, we present the distributions of the effective spin parameter (χeff), the precession spin parameter (χp), and the chirp mass (mchirp) expected in hierarchical mergers. Under a wide range of assumptions, hierarchical mergers produce (i) a monotonic increase of the average of the typical total spin for merging binaries, which we characterize with $$\scriptstyle{{\bar{\chi }}_\mathrm{typ}\equiv \overline{(\chi _\mathrm{eff}^2+\chi _\mathrm{p}^2)^{1/2}}}$$, up to roughly the maximum mchirp among first-generation (1g) BHs, and (ii) a plateau at $${\bar{\chi }}_\mathrm{typ}\sim 0.6$$ at higher mchirp. We suggest that the maximum mass and typical spin magnitudes for 1g BHs can be estimated from $${\bar{\chi }}_\mathrm{typ}$$ as a function of mchirp. The GW data observed in LIGO/Virgo O1–O3a prefers an increase in $${\bar{\chi }}_\mathrm{typ}$$ at low mchirp, which is consistent with the growth of the BH spin magnitude by hierarchical mergers at ∼2σ confidence. A Bayesian analysis using the χeff, χp, and mchirp distributions suggests that 1g BHs have the maximum mass of ∼15–$$30\, {\rm M}_\odot$$ if the majority of mergers are of high-generation BHs (not among 1g–1g BHs), which is consistent with mergers in active galactic nucleus discs and/or nuclear star clusters, while if mergers mainly originate from globular clusters, 1g BHs are favoured to have non-zero spin magnitudes of ∼0.3. We also forecast that signatures for hierarchical mergers in the $${\bar{\chi }}_\mathrm{typ}$$ distribution can be confidently recovered once the number of GW events increases to ≳ O(100).more » « less
-
ABSTRACT While the first “seeds” of supermassive black holes (BH) can range from $$\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$$, the lowest mass seeds ($$\lesssim 10^3~\rm {\rm M}_{\odot }$$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $$z\ge 7$$ BH populations for low-mass seeds. We ran two types of boxes that model $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $$[9~\mathrm{Mpc}]^3$$ (BRAHMA-9-D3) boxes that directly resolve $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $$[18~\mathrm{Mpc}]^3$$ (BRAHMA-18-E4), and $$\sim [36~\mathrm{Mpc}]^3$$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $$\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $$\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $$\sim 2-3$$) at the anticipated detection limits of potential future X-ray facilities ($$\sim 10^{43}~ \mathrm{ergs~s^{-1}}$$ at $$z\sim 7$$). Our simulations predict BHs $$\sim 10-100$$ times heavier than the local $$M_*$$ versus $$M_{\mathrm{ bh}}$$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $$\sim 1-15~\mathrm{kpc}$$, with rates of $$\sim 200-2000$$ yr−1 for $$\gtrsim 10^3~\rm {\rm M}_{\odot }$$ BHs, $$\sim 6-60$$ yr−1 for $$\gtrsim 10^4~\rm {\rm M}_{\odot }$$ BHs, and up to $$\sim 10$$ yr−1 amongst $$\gtrsim 10^5~\rm {\rm M}_{\odot }$$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models.more » « less
An official website of the United States government

