skip to main content


Title: Tidal disruption events from three-body scatterings and eccentricity pumping in the discs of active galactic nuclei
ABSTRACT

Tidal disruption events (TDEs) are routinely observed in quiescent galaxies, as stars from the nuclear star cluster are scattered into the loss cone of the central supermassive black hole (SMBH). TDEs are also expected to occur in active galactic nuclei (AGNs), due to scattering or orbital eccentricity pumping of stars embedded in the innermost regions of the AGN accretion disc. Encounters with embedded stellar-mass black holes (BH) can result in AGN μTDEs. AGN TDEs and μTDEs could therefore account for a fraction of observed AGN variability. Here, by performing scattering experiments with the few-body code SpaceHub, we compute the probability of AGN TDEs and μTDEs as a result of 3-body interactions between stars and binary BHs. We find that AGN TDEs are more probable during the early life of the AGNs, when rates are $\sim (6\times 10^{-5}-5 \times 10^{-2}) (f_\bullet /0.01)\, \rm {AGN}^{-1}$ yr−1 (where f• is the ratio between the number density of BHs and stars), generally higher than in quiescent galactic nuclei. By contrast, μTDEs should occur throughout the AGN lifetime at a rate of $\sim (1\times 10^{-4} - 4\times 10^{-2})(f_\bullet /0.01)\, \rm {AGN}^{-1}$ yr−1. Detection and characterization of AGN TDEs and μAGN TDEs with future surveys using Rubin and Roman will help constrain the populations of stars and compact objects embedded in AGN discs, a key input for the LVK AGN channel.

 
more » « less
Award ID(s):
2219090 2006839
NSF-PAR ID:
10508809
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
531
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1409-1421
Size(s):
p. 1409-1421
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Galactic nuclei are promising sites for stellar origin black hole (BH) mergers, as part of merger hierarchies in deep potential wells. We show that binary black hole (BBH) merger rates in active galactic nuclei (AGNs) should always exceed merger rates in quiescent galactic nuclei (nuclear star clusters, NSCs) around supermassive black holes (SMBHs) without accretion discs. This is primarily due to average binary lifetimes in AGNs that are significantly shorter than those in NSCs. The lifetime difference comes from rapid hardening of BBHs in AGNs, such that their semimajor axes are smaller than the hard–soft boundary of their parent NSC; this contrasts with the large average lifetime to merger for BBHs in NSCs around SMBHs, due to binary ionization mechanisms. Secondarily, merger rates in AGNs are enhanced by gas-driven binary formation mechanisms. Formation of new BHs in AGN discs is a minor contributor to the rate differences. With the gravitational wave detection of several BBHs with at least one progenitor in the upper mass gap, and signatures of dynamical formation channels in the χeff distribution, we argue that AGNs could contribute $\sim 25{\!-\!}80{{\ \rm per\ cent}}$ of the LIGO–Virgo measured rate of $\sim 24\, \rm {Gpc}^{-3} \rm {yr}^{-1}$.

     
    more » « less
  2. Abstract Active galactic nuclei (AGNs) can funnel stars and stellar remnants from the vicinity of the galactic center into the inner plane of the AGN disk. Stars reaching this inner region can be tidally disrupted by the stellar-mass black holes in the disk. Such micro tidal disruption events (micro-TDEs) could be a useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of ∼170 Gpc −3 yr −1 . Their cleanest observational probe may be the electromagnetic detection of tidal disruption in AGNs by heavy supermassive black holes ( M • ≳ 10 8 M ⊙ ) that cannot tidally disrupt solar-type stars. The reconstructed rate of such events from observations, nonetheless, appears to be much lower than our estimated micro-TDE rate. We discuss two such micro-TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl). 
    more » « less
  3. ABSTRACT In large-scale hydrodynamical cosmological simulations, the fate of massive galaxies is mainly dictated by the modelling of feedback from active galactic nuclei (AGNs). The amount of energy released by AGN feedback is proportional to the mass that has been accreted on to the black holes (BHs), but the exact subgrid modelling of AGN feedback differs in all simulations. While modern simulations reliably produce populations of quiescent massive galaxies at z ≤ 2, it is also crucial to assess the similarities and differences of the responsible AGN populations. Here, we compare the AGN populations of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations. The AGN luminosity function (LF) varies significantly between simulations. Although in agreement with current observational constraints at z = 0, at higher redshift the agreement of the LFs deteriorates with most simulations producing too many AGNs of $L_{\rm x, 2\!-\!10 \, keV}\sim 10^{43\!-\!44}\, \rm erg\, s^{-1}$. AGN feedback in some simulations prevents the existence of any bright AGN with $L_{\rm x, 2\!-\!10 \, keV}\geqslant 10^{45}\rm \,erg\, s^{-1}$ (although this is sensitive to AGN variability), and leads to smaller fractions of AGN in massive galaxies than in the observations at z ≤ 2. We find that all the simulations fail at producing a number density of AGN in good agreement with observational constraints for both luminous ($L_{\rm x, 2\!-\!10 \, keV}\sim 10^\text{43-45}\, \rm erg\, s^{-1}$) and fainter ($L_{\rm x, 2\!-\!10 \, keV}\sim 10^\text{42-43}\, \rm erg\, s^{-1}$) AGNs and at both low and high redshifts. These differences can aid us in improving future BH and galaxy subgrid modelling in simulations. Upcoming X-ray missions (e.g. Athena, AXIS, and LynX) will bring faint AGNs to light and new powerful constraints. After accounting for AGN obscuration, we find that the predicted number density of detectable AGNs in future surveys spans at least one order of magnitude across the simulations, at any redshift. 
    more » « less
  4. null (Ed.)
    ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs are $\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is ${R}_{\mathrm{ BH}\!-\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{-3}\, \rm {yr}^{-1},({\mathit{ R}}_{NS\!-\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{-3}\, \rm {yr}^{-1}$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratios derived from LIGO can restrict models of MF, mass segregation, and populations embedded in AGN discs. The expected number of electromagnetic (EM) counterparts to NS–BH mergers in AGN discs at z < 1 is $\sim [30,900]\, {\rm {yr}}^{-1}(f_{\mathrm{ AGN}}/0.1)$. EM searches for flaring events in large AGN surveys will complement LIGO constraints on AGN models and the embedded populations that must live in them. 
    more » « less
  5. ABSTRACT

    While the first “seeds” of supermassive black holes (BH) can range from $\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$, the lowest mass seeds ($\lesssim 10^3~\rm {\rm M}_{\odot }$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $z\ge 7$ BH populations for low-mass seeds. We ran two types of boxes that model $\sim 10^3~\rm {\rm M}_{\odot }$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $[9~\mathrm{Mpc}]^3$ (BRAHMA-9-D3) boxes that directly resolve $\sim 10^3~\rm {\rm M}_{\odot }$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $[18~\mathrm{Mpc}]^3$ (BRAHMA-18-E4), and $\sim [36~\mathrm{Mpc}]^3$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $\sim 2-3$) at the anticipated detection limits of potential future X-ray facilities ($\sim 10^{43}~ \mathrm{ergs~s^{-1}}$ at $z\sim 7$). Our simulations predict BHs $\sim 10-100$ times heavier than the local $M_*$ versus $M_{\mathrm{ bh}}$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $\sim 1-15~\mathrm{kpc}$, with rates of $\sim 200-2000$ yr−1 for $\gtrsim 10^3~\rm {\rm M}_{\odot }$ BHs, $\sim 6-60$ yr−1 for $\gtrsim 10^4~\rm {\rm M}_{\odot }$ BHs, and up to $\sim 10$ yr−1 amongst $\gtrsim 10^5~\rm {\rm M}_{\odot }$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models.

     
    more » « less