- Editors:
- Kolodny, Rachel
- Publication Date:
- NSF-PAR ID:
- 10230603
- Journal Name:
- PLOS Computational Biology
- Volume:
- 17
- Issue:
- 2
- Page Range or eLocation-ID:
- e1008753
- ISSN:
- 1553-7358
- Sponsoring Org:
- National Science Foundation
More Like this
-
Kolodny, Rachel (Ed.)The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top- L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top- L /5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium-more »
-
Abstract Predicting residue‐residue distance relationships (eg, contacts) has become the key direction to advance protein structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure prediction system with three major components: contact distance prediction based on deep convolutional neural networks, distance‐driven template‐free (ab initio) modeling, and protein model ranking empowered by deep learning and contact prediction. Our experiment demonstrates that contact distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out of all 98 predictors in both template‐free and template‐based structure modeling in CASP13. Deep convolutional neural network can utilize global information in pairwise residue‐residue features such as coevolution scores to substantially improve contact distance prediction, which played a decisive role in correctly folding some free modeling and hard template‐based modeling targets. Deep learning also successfully integrated one‐dimensional structural features, two‐dimensional contact information, and three‐dimensional structural quality scores to improve protein model quality assessment, where the contact prediction was demonstrated to consistently enhance ranking of protein models for the first time. The success of MULTICOM system clearly showsmore »
-
Abstract Protein structure prediction is an important problem in bioinformatics and has been studied for decades. However, there are still few open-source comprehensive protein structure prediction packages publicly available in the field. In this paper, we present our latest open-source protein tertiary structure prediction system—MULTICOM2, an integration of template-based modeling (TBM) and template-free modeling (FM) methods. The template-based modeling uses sequence alignment tools with deep multiple sequence alignments to search for structural templates, which are much faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without using any known structure as template. In the blind CASP14 experiment, the average TM-score of the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM (regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a domain. The success rate is increased to 3% for both regular and hard domains if fivemore »
-
Abstract Substantial progresses in protein structure prediction have been made by utilizing deep‐learning and residue‐residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning‐based protein inter‐residue distance predictor to improve template‐free (ab initio) tertiary structure prediction, (b) an enhanced template‐based tertiary structure prediction method, and (c) distance‐based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter‐domain structure prediction. The results demonstrate that the template‐free modeling based on deep learning and residue‐residue distance prediction can predict the correct topology for almost all template‐based modeling targets and a majority of hard targets (template‐free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template‐free modeling performs better than the template‐based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template‐free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. Themore »
-
Abstract Sequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to guide the replica-exchange Monte Carlo fragment assembly simulations. The method was tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved by QUARK. For the 59 cases that had either low contact accuracy or few homologous sequences, C-QUARK correctly folded 6 times more proteins than other contact-based folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP (critical assessment of protein structure prediction) experiment and had an average GDT_TS (global distance test) score that was 5% higher than the best CASP predictors. These data demonstrate, in a robust manner, the progress in modeling non-homologous protein structures using low-accuracy and sparse contact-map predictions.