skip to main content

Title: Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon cycling may be critical to correctly projecting changes in ocean deoxygenation and the strength of feedbacks on atmosphericpCO2. Here we extend and calibrate a temperature-dependent representation ofmarine carbon cycling in the cGENIE.muffin Earth system model, intended forboth past and future climate applications. In this, we combine atemperature-dependent remineralisation scheme more » for sinking organic matterwith a biological export production scheme that also includes a dependenceon ambient seawater temperature. Via a parameter ensemble, we jointlycalibrate the two parameterisations by statistically contrasting model-projected fields of nutrients, oxygen, and the stable carbon isotopicsignature (δ13C) of dissolved inorganic carbon in the oceanwith modern observations. We additionally explore the role of temperature inthe creation and recycling of dissolved organic matter (DOM) and hence itsimpact on global carbon cycle dynamics. We find that for the present day, the temperature-dependent version showsa fit to the data that is as good as or better than the existing tuned non-temperature-dependent version of the cGENIE.muffin. The main impact ofaccounting for temperature-dependent remineralisation of POM is in drivinghigher rates of remineralisation in warmer waters, in turn driving a morerapid return of nutrients to the surface and thereby stimulating organicmatter production. As a result, more POM is exported below 80 m but onaverage reaches shallower depths in middle- and low-latitude warmer waterscompared to the standard model. Conversely, at higher latitudes, colderwater temperature reduces the rate of nutrient resupply to the surface andPOM reaches greater depth on average as a result of slower subsurface ratesof remineralisation. Further adding temperature-dependent DOM processeschanges this overall picture only a little, with a slight weakening ofexport production at higher latitudes. As an illustrative application of the new model configuration andcalibration, we take the example of historical warming and briefly assessthe implications for global carbon cycling of accounting for a more completeset of temperature-dependent processes in the ocean. We find that betweenthe pre-industrial era (ca. 1700) and the present (year 2010), in response to asimulated air temperature increase of 0.9 ∘C and an associatedprojected mean ocean warming of 0.12 ∘C (0.6 ∘C insurface waters and 0.02 ∘C in deep waters), a reduction inparticulate organic carbon (POC) export at 80 m of just 0.3 % occurs (or 0.7 % including a temperature-dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon away from the surface (at 80 m) to the deep ocean (at 1040 m) is reduced by 5 %. In contrast, with no assumed temperature-dependent processes impacting production or remineralisation of either POM or DOM, global POC export at 80 m falls by 2.9 % between the pre-industrial era and the present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of the stratification-induced restriction in its physical transport. « less
; ; ;
Award ID(s):
1736771 1702913
Publication Date:
Journal Name:
Geoscientific Model Development
Page Range or eLocation-ID:
125 to 149
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Recent earth system models predict a 10 %–20 % decrease in particulate organic carbon export from the surface ocean by the end of the21st century due to global climate change. This decline is mainly caused by increased stratification of the upper ocean, resulting in reducedshallow subsurface nutrient concentrations and a slower supply of nutrients to the surface euphotic zone in low latitudes. These predictions,however, do not typically account for associated changes in remineralization depths driven by sinking-particle size. Here we combinesatellite-derived export and particle size maps with a simple 3-D global biogeochemical model that resolves dynamic particle size distributions toinvestigate how shifts in particle size may buffer or amplify predicted changes in surface nutrient supply and therefore export production. We showthat higher export rates are empirically correlated with larger sinking particles and presumably larger phytoplankton, particularly in tropical andsubtropical regions. Incorporating these empirical relationships into our global model shows that as circulation slows, a decrease in export isassociated with a shift towards smaller particles, which sink more slowly and are thus remineralized shallower. This shift towards shallowerremineralization in turn leads to greater recycling of nutrients in the upper water column and thus faster nutrient recirculation into the euphoticzone. The end resultmore »is a boost in productivity and export that counteracts the initial circulation-driven decreases. This negative feedbackmechanism (termed the particle-size–remineralization feedback) slows export decline over the next century by ∼ 14 % globally (from −0.29to −0.25 GtC yr−1) and by ∼ 20 % in the tropical and subtropical oceans, where export decreases are currently predicted tobe greatest. Our findings suggest that to more accurately predict changes in biological pump strength under a warming climate, earth system modelsshould include dynamic particle-size-dependent remineralization depths.« less
  2. Moisander, Pia (Ed.)
    Abstract The availability of nitrogen (N) in ocean surface waters affects rates of photosynthesis and marine ecosystem structure. In spite of low dissolved inorganic N concentrations, export production in oligotrophic waters is comparable to more nutrient replete regions. Prior observations raise the possibility that di-nitrogen (N2) fixation supplies a significant fraction of N supporting export production in the Gulf of Mexico. In this study, geochemical tools were used to quantify the relative and absolute importance of both subsurface nitrate and N2 fixation as sources of new N fueling export production in the oligotrophic Gulf of Mexico in May 2017 and May 2018. Comparing the isotopic composition (“δ15N”) of nitrate with the δ15N of sinking particulate N collected during five sediment trap deployments each lasting two to four days indicates that N2 fixation is typically not detected and that the majority (≥80%) of export production is supported by subsurface nitrate. Moreover, no gradients in upper ocean dissolved organic N and suspended particulate N concentration and/or δ15N were found that would indicate significant N2 fixation fluxes accumulated in these pools, consistent with low Trichodesmium spp. abundance. Finally, comparing the δ15N of sinking particulate N captured within vs. below the euphotic zone indicatesmore »that during late spring regenerated N is low in δ15N compared to sinking N.« less
  3. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the uppermore »water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.« less
  4. Abstract

    The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of themore »particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.

    « less
  5. Abstract

    Groundwater is projected to become an increasing source of freshwater and nutrients to the Arctic Ocean as permafrost thaws, yet few studies have quantified groundwater inputs to Arctic coastal waters under contemporary conditions. New measurements along the Alaska Beaufort Sea coast show that dissolved organic carbon and nitrogen (DOC and DON) concentrations in supra-permafrost groundwater (SPGW) near the land-sea interface are up to two orders of magnitude higher than in rivers. This dissolved organic matter (DOM) is sourced from readily leachable organic matter in surface soils and deeper centuries-to millennia-old soils that extend into thawing permafrost. SPGW delivers approximately 400–2100 m3of freshwater, 14–71 kg of DOC, and 1–4 kg of DON to the coastal ocean per km of shoreline per day during late summer. These substantial fluxes are expected to increase as massive stocks of frozen organic matter in permafrost are liberated in a warming Arctic.