Abstract Coastal upwelling of nutrients and metals along eastern boundary currents fuels some of the most biologically productive marine ecosystems. Although iron is a main driver of productivity in many of these regions, iron cycling and acquisition by microbes remain poorly constrained, in part due to the unknown composition of organic ligands that keep bioavailable iron in solution. In this study, we investigated organic ligand composition in discrete water samples collected across the highly productive California Coastal upwelling system. Siderophores were observed in distinct nutrient regimes at concentrations ranging from 1 pM to 18 pM. Near the shallow continental shelf, ferrioxamine B was observed in recently upwelled, high chlorophyll surface waters while synechobactins were identified within nepheloid layers at 60–90 m depth. In offshore waters characterized by intermediate chlorophyll, iron, and nitrate concentrations, we found amphibactins and an unknown siderophore with a molecular formula of C33H58O8N5Fe. Highest concentrations were measured in the photic zone, however, amphibactins were also found in waters as deep as 1500 m. The distribution of siderophores provides evidence for microbial iron deficiency across a range of nutrient regimes and indicates siderophore production and acquisition is an important strategy for biological iron uptake in iron limited coastal systems. Polydisperse humic ligands were also detected throughout the water column and were particularly abundant near the benthic boundary. Our results highlight the fine‐scale spatial heterogeneity of metal ligand composition in an upwelling environment and elucidate distinct sources that include biological production and the degradation of organic matter in suboxic waters.
more »
« less
This content will become publicly available on January 1, 2026
Patterns of siderophore production and utilization at Station ALOHA from the surface to mesopelagic waters
Abstract The North Pacific subtropical gyre is a globally important contributor to carbon uptake despite being a persistently oligotrophic ecosystem. Supply of the micronutrient iron to the upper ocean varies seasonally to episodically, and when coupled with rapid biological consumption, results in low iron concentrations. In this study, we examined changes in iron uptake rates, along with siderophore concentrations and biosynthesis potential at Station ALOHA across time (2013–2016) and depth (surface to 500 m) to observe changes in iron acquisition and internal cycling by the microbial community. The genetic potential for siderophore biosynthesis was widespread throughout the upper water column, and biosynthetic gene clusters peaked in spring and summer along with siderophore concentrations, suggesting changes in nutrient delivery, primary production, and carbon export seasonally impact iron acquisition. Dissolved iron turnover times, calculated from iron‐amended experiments in surface (15 m) and mesopelagic (300 m) waters, ranged from 9 to 252 d. The shortest average turnover times at both depths were associated with inorganic iron additions (14 9 d) and the longest with iron bound to strong siderophores (148 225 d). Uptake rates of siderophore‐bound iron were faster in mesopelagic waters than in the surface, leading to high Fe : C uptake ratios of heterotrophic bacteria in the upper mesopelagic. The rapid cycling and high demand for iron at 300 m suggest differences in microbial metabolism and iron acquisition in the mesopelagic compared to surface waters. Together, changes in siderophore production and consumption over the seasonal cycle suggest organic carbon availability impacts iron cycling at Station ALOHA.
more »
« less
- Award ID(s):
- 2241005
- PAR ID:
- 10588878
- Publisher / Repository:
- Wiley Periodicals LLC
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 70
- Issue:
- 1
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- 128 to 145
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum . We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.more » « less
-
ABSTRACT Cyanobacteria are foundational drivers of global nutrient cycling, with high intracellular iron (Fe) requirements. Fe is found at extremely low concentrations in aquatic systems, however, and the ways in which cyanobacteria take up Fe are largely unknown, especially the initial step in Fe transport across the outer membrane. Here, we identified one TonB protein and four TonB-dependent transporters (TBDTs) of the energy-requiring Fe acquisition system and six porins of the passive diffusion Fe uptake system in the model cyanobacterium Synechocystis sp. strain PCC 6803. The results experimentally demonstrated that TBDTs not only participated in organic ferri-siderophore uptake but also in inorganic free Fe (Fe′) acquisition. 55 Fe uptake rate measurements showed that a TBDT quadruple mutant acquired Fe at a lower rate than the wild type and lost nearly all ability to take up ferri-siderophores, indicating that TBDTs are critical for siderophore uptake. However, the mutant retained the ability to take up Fe′ at 42% of the wild-type Fe′ uptake rate, suggesting additional pathways of Fe′ acquisition besides TBDTs, likely by porins. Mutations in four of the six porin-encoding genes produced a low-Fe-sensitive phenotype, while a mutation in all six genes was lethal to cell survival. These diverse outer membrane Fe uptake pathways reflect cyanobacterial evolution and adaptation under a range of Fe regimes across aquatic systems. IMPORTANCE Cyanobacteria are globally important primary producers and contribute about 25% of global CO 2 fixation. Low Fe bioavailability in surface waters is thought to limit the primary productivity in as much as 40% of the global ocean. The Fe acquisition strategies that cyanobacteria have evolved to overcome Fe deficiency remain poorly characterized. We experimentally characterized the key players and the cooperative work mode of two Fe uptake pathways, including an active uptake pathway and a passive diffusion pathway in the model cyanobacterium Synechocystis sp. PCC 6803. Our finding proved that cyanobacteria use ferri-siderophore transporters to take up Fe′, and they shed light on the adaptive mechanisms of cyanobacteria to cope with widespread Fe deficiency across aquatic environments.more » « less
-
Abstract Siderophores are strong iron‐binding molecules produced and utilized by microbes to acquire the limiting nutrient iron (Fe) from their surroundings. Despite their importance as a component of the iron‐binding ligand pool in seawater, data on the distribution of siderophores and the microbes that use them are limited. Here, we measured the concentrations and types of dissolved siderophores during two cruises in April 2016 and June 2017 that transited from the iron‐replete, low‐macronutrient North Pacific Subtropical Gyre through the North Pacific Transition Zone (NPTZ) to the iron‐deplete, high‐macronutrient North Pacific Subarctic Frontal Zone (SAFZ). Surface siderophore concentrations in 2017 were higher in the NPTZ (4.0–13.9 pM) than the SAFZ (1.2–5.1 pM), which may be partly attributed to stimulated siderophore production by environmental factors such as dust‐derived iron concentrations (up to 0.51 nM). Multiple types of siderophores were identified on both cruises, including ferrioxamines, amphibactins, and iron‐free forms of photoreactive siderophores, which suggest active production and use of diverse siderophores across latitude and depth. Siderophore biosynthesis and uptake genes and transcripts were widespread across latitude, and higher abundances of these genes and transcripts at higher latitudes may reflect active siderophore‐mediated iron uptake by the local bacterial community across the North Pacific. The variability in the taxonomic composition of bacterial communities that transcribe putative ferrioxamine, amphibactin, and salmochelin transporter genes at different latitudes further suggests that the microbial groups involved in active siderophore production and usage change depending on local conditions.more » « less
-
null (Ed.)High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13 C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated ( Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.more » « less
An official website of the United States government
