Abstract Under broken time reversal symmetry such as in the presence of external magnetic field or internal magnetization, a transverse voltage can be established in materials perpendicular to both longitudinal current and applied magnetic field, known as classical Hall effect. However, this symmetry constraint can be relaxed in the nonlinear regime, thereby enabling nonlinear anomalous Hall current in time-reversal invariant materials – an underexplored realm with exciting new opportunities beyond classical linear Hall effect. Here, using group theory and first-principles theory, we demonstrate a remarkable ferroelectric nonlinear anomalous Hall effect in time-reversal invariant few-layer WTe2where nonlinear anomalous Hall current switches in odd-layer WTe2except 1T′ monolayer while remaining invariant in even-layer WTe2upon ferroelectric transition. This even-odd oscillation of ferroelectric nonlinear anomalous Hall effect was found to originate from the absence and presence of Berry curvature dipole reversal and shift dipole reversal due to distinct ferroelectric transformation in even and odd-layer WTe2. Our work not only treats Berry curvature dipole and shift dipole on an equal footing to account for intraband and interband contributions to nonlinear anomalous Hall effect, but also establishes Berry curvature dipole and shift dipole as new order parameters for noncentrosymmetric materials. The present findings suggest that ferroelectric metals and Weyl semimetals may offer unprecedented opportunities for the development of nonlinear quantum electronics.
more »
« less
Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2
Abstract While the anomalous Hall effect can manifest even without an external magnetic field, time reversal symmetry is nonetheless still broken by the internal magnetization of the sample. Recently, it has been shown that certain materials without an inversion center allow for a nonlinear type of anomalous Hall effect whilst retaining time reversal symmetry. The effect may arise from either Berry curvature or through various asymmetric scattering mechanisms. Here, we report the observation of an extremely large c -axis nonlinear anomalous Hall effect in the non-centrosymmetric T d phase of MoTe 2 and WTe 2 without intrinsic magnetic order. We find that the effect is dominated by skew-scattering at higher temperatures combined with another scattering process active at low temperatures. Application of higher bias yields an extremely large Hall ratio of E ⊥ / E || = 2.47 and corresponding anomalous Hall conductivity of order 8 × 10 7 S/m.
more »
« less
- PAR ID:
- 10230754
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau’s order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime. Here we report the discovery of a giant spontaneous Hall effect in the Kondo semimetal C e 3 B i 4 P d 3 that is noncentrosymmetric but preserves time-reversal symmetry. We attribute this finding to Weyl nodes—singularities of the Berry curvature—that emerge in the immediate vicinity of the Fermi level due to the Kondo interaction. We stress that this phenomenon is distinct from the previously detected anomalous Hall effect in materials with broken time-reversal symmetry; instead, it manifests an extreme topological response that requires a beyond-perturbation-theory description of the previously proposed nonlinear Hall effect. The large magnitude of the effect in even tiny electric and zero magnetic fields as well as its robust bulk nature may aid the exploitation in topological quantum devices.more » « less
-
Abstract Magnetic topological materials have recently emerged as a promising platform for studying quantum geometry by the nonlinear transport in thin film devices. In this work, an antiferromagnetic (AFM) semiconductor EuSc₂Te₄ as the first bulk crystal that exhibits quantum geometry‐driven nonlinear transport is reported. This material crystallizes into an orthorhombic lattice with AFM order below 5.2 K and a bandgap of less than 50 meV. The calculated band structure aligns with the angle‐resolved photoemission spectroscopy spectrum. The AFM order preserves combined space‐time inversion symmetry but breaks both spatial inversion and time‐reversal symmetry, leading to the nonlinear Hall effect (NLHE). Nonlinear Hall voltage measured in bulk crystals appears at zero field, peaks near the spin‐flop transition as the field increases, and then diminishes as the spin moments align into a ferromagnetic order. This field dependence, along with the scaling analysis of the nonlinear Hall conductivity, suggests that the NLHE of EuSc₂Te₄ involves contributions from quantum metric, in addition to extrinsic contributions, such as spin scattering and junction effects. Furthermore, this NLHE is found to have the functionality of broadband frequency mixing, indicating its potential applications in electronics. This work reveals a new avenue for studying magnetism‐induced nonlinear transport in magnetic materials.more » « less
-
Breaking the time-reversal symmetry on the surface of a topological insulator can open a gap for the linear dispersion and make the Dirac fermions massive. This can be achieved by either doping a topological insulator with magnetic elements or proximity-coupling it to magnetic insulators. While the exchange gap can be directly imaged in the former case, measuring it at the buried magnetic insulator/topological insulator interface remains to be challenging. Here, we report the observation of a large nonlinear Hall effect in iron garnet/Bi2Se3 heterostructures. Besides illuminating its magnetic origin, we also show that this nonlinear Hall effect can be utilized to measure the size of the exchange gap and the magnetic-proximity onset temperature. Our results demonstrate the nonlinear Hall effect as a spectroscopic tool to probe the modified band structure at magnetic insulator/topological insulator interfaces.more » « less
-
The studies of topological insulators (TI) and topological semimetals have been at frontiers of condensed matter physics and material science. Both classes of materials are characterized by robust surface states created by the topology of the bulk band structures and exhibit exotic transport properties. When magnetism is present in topological materials and breaks the time-reversal symmetry, more exotic quantum phenomena can be generated, e.g., quantum anomalous Hall effect (QAHE), axion insulator, and large intrinsic AHE. In this research update, we briefly summarize the recent research progress in magnetic topological materials, including intrinsic magnetic TI and magnetic Weyl semimetals.more » « less
An official website of the United States government

