skip to main content


Title: Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates

Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple “cryptic leading edges” within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as “cell polarization barriers,” decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.

 
more » « less
Award ID(s):
1806903
NSF-PAR ID:
10230779
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
22
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2021135118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance using directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell–ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.

     
    more » « less
  2. Background: Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods: We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results: Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions: We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways. 
    more » « less
  3. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescent MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression. 
    more » « less
  4. Abstract

    The cell migration cycle, well‐established in 2D, proceeds with forming new protrusive structures at the cell membrane and subsequent redistribution of contractile machinery. Three‐dimensional (3D) environments are complex and composed of 1D fibers, and 1D fibers are shown to recapitulate essential features of 3D migration. However, the establishment of protrusive activity at the cell membrane and contractility in 1D fibrous environments remains partially understood. Here the role of membrane curvature regulator IRSp53 is examined as a coupler between actin filaments and plasma membrane during cell migration on single, suspended 1D fibers. IRSp53 depletion reduced cell‐length spanning actin stress fibers that originate from the cell periphery, protrusive activity, and contractility, leading to uncoupling of the nucleus from cellular movements. A theoretical model capable of predicting the observed transition of IRSp53‐depleted cells from rapid stick‐slip migration to smooth and slower migration due to reduced actin polymerization at the cell edges is developed, which is verified by direct measurements of retrograde actin flow using speckle microscopy. Overall, it is found that IRSp53 mediates actin recruitment at the cellular tips leading to the establishment of cell‐length spanning fibers, thus demonstrating a unique role of IRSp53 in controlling cell migration in 3D.

     
    more » « less
  5. Tumor microenvironment is a complex niche consisting of cancer cells and stromal cells in a network of extracellular matrix proteins and various soluble factors. Dynamic interactions among cellular and non-cellular components of the tumor microenvironment regulate tumor initiation and progression. Fibroblasts are the most abundant stromal cell type and dynamically interact with cancer cells both in primary tumors and in metastases. Cancer cells activate resident fibroblasts to produce and secrete soluble signaling molecules that support proliferation, migration, matrix invasion, and drug resistance of cancer cell and tumor angiogenesis. In recent years, various forms of three-dimensional tumor models have been developed to study tumor–stromal interactions and to identify anti-cancer drugs that block these interactions. There is currently a technological gap in development of tumor models that are physiologically relevant, scalable, and allow convenient, on-demand addition of desired components of the tumor microenvironment. In this review, we discuss three studies from our group that focus on developing bioengineered models to study tumor-stromal signaling. We will present these studies chronologically and based on their increasing complexity. We will discuss the validation of the models using a CXCL12-CXCR4 chemokine-receptor signaling present among activated fibroblasts and breast cancer cells in solid tumors, highlight the advantages and shortcomings of the models, and conclude with our perspectives on their applications. Impact statement Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs. 
    more » « less