skip to main content

Title: The second Higgs at the lifetime frontier
A bstract We assess the current coverage and the future discovery potential of LHC searches for heavy Higgs bosons decaying into long-lived particles (LLPs), focusing primarily on the production of pairs of LLPs with hadronic final states. These signatures are generic in dark sectors where a heavy scalar decays into pairs of lighter states which subsequently mix with the Standard Model Higgs. We show that a handful of existing analyses provide broad coverage of LLP decay lengths ranging from millimeters to tens of meters, and explore the complementarity between searches for displaced and prompt final states in several simplified models. For both heavy singlet and heavy doublet scalars, LLP searches typically provide the leading sensitivity in current data and exhibit the strongest discovery potential in future LHC runs. We further translate the impact of these searches into the parameter space of various Twin Higgs models, demonstrating that LLP searches are a promising avenue for discovering a Twin Higgs with displaced decays. Finally, we propose a variety of additional search channels that would improve coverage of the second Higgs at the lifetime frontier.
Authors:
; ; ; ;
Award ID(s):
1654502
Publication Date:
NSF-PAR ID:
10230843
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
7
ISSN:
1029-8479
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature,more »a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity ‘dark showers’, highlighting opportunities for expanding the LHC reach for these signals.

    « less
  2. A bstract A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb − 1 of $$ \sqrt{s} $$ s = 13 TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying Z boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence ofmore »at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes cτ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.« less
  3. A bstract The search for long-lived particles (LLP) is an exciting physics opportunity in the upcoming runs of the Large Hadron Collider. In this paper, we focus on a new search strategy of using the High Granularity Calorimeter (HGCAL), part of the upgrade of the CMS detector, in such searches. In particular, we demonstrate that the high granularity of the calorimeter allows us to see “shower tracks” in the calorimeter, and can play a crucial role in identifying the signal and suppressing the background. We study the potential reach of the HGCAL using a signal model in which the Standardmore »Model Higgs boson decays into a pair of LLPs, h → XX . After carefully estimating the Standard Model QCD and the misreconstructed fake-track backgrounds, we give the projected reach for both an existing vector boson fusion trigger and a novel displaced-track-based trigger. Our results show that the best reach for the Higgs decay branching ratio, BR( h → XX ), in the vector boson fusion channel is about $$ \mathcal{O} $$ O (10 − 4 ) with lifetime cτ X ∼ 0 . 1–1 meters, while for the gluon gluon fusion channel it is about $$ \mathcal{O} $$ O (10 − 5 –10 − 6 ) for similar lifetimes. For longer lifetime cτ X ∼ 10 3 meters, our search could probe BR( h → XX ) down to a few × 10 − 4 (10 − 2 ) in the gluon gluon fusion (vector boson fusion) channels, respectively. In comparison with these previous searches, our new search shows enhanced sensitivity in complementary regions of the LLP parameter space. We also comment on many improvements can be implemented to further improve our proposed search.« less
  4. Abstract A search is performed for massive long-lived particles (LLPs) decaying semileptonically into a muon and two quarks. Two kinds of LLP production processes were considered. In the first, a Higgs-like boson with mass from 30 to 200 $$\text {\,GeV\!/}c^2$$ \,GeV\!/ c 2 is produced by gluon fusion and decays into two LLPs. The analysis covers LLP mass values from 10 $$\text {\,GeV\!/}c^2$$ \,GeV\!/ c 2 up to about one half the Higgs-like boson mass. The second LLP production mode is directly from quark interactions, with LLP masses from 10 to 90 $$\text {\,GeV\!/}c^2$$ \,GeV\!/ c 2 . The LLPmore »lifetimes considered range from 5 to 200 ps. This study uses LHCb data collected from proton-proton collisions at $$\sqrt{s} = 13\text {\,TeV} $$ s = 13 \,TeV , corresponding to an integrated luminosity of 5.4 $$\text {\,fb} ^{-1}$$ \,fb - 1 . No evidence of these long-lived states has been observed, and upper limits on the production cross-section times branching ratio have been set for each model considered.« less
  5. A bstract We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of “extended” warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a ∼ O (10) TeV (new, “intermediate”) brane, whereas the SM gauge fields (and gravity) propagate further down to the ∼ O (TeV) infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals frommore »KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal W/Z particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) ∼ 4 TeV in both channels, in the specific model with only gluon field (and gravity) propagating in the extended bulk, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons.« less