We explore the sensitivity of future hadron colliders to constrain the fermionic Higgs portal, with a focus on scenarios where the new fermions cannot be directly observed in exotic Higgs decays. This portal emerges in various models including twin-Higgs scenarios and dark matter models, posing significant challenges for collider tests. Working in an effective field theory (EFT), we determine the reach of the high-luminosity option of the Large Hadron Collider (HL-LHC), the high-energy upgrade of the LHC (HE-LHC) and a proposed Future Circular Collider (FCC) in probing the fermionic Higgs portal through off-shell and double-Higgs production. Notably, we find that quantum-enhanced indirect probes offer a better sensitivity than other direct Higgs measurements. We argue that this finding is valid in a wide class of ultraviolet realisations of the EFT. Our study presents a roadmap of a multifaceted search strategy for exploring the fermionic Higgs portal at forthcoming hadron machines.
This content will become publicly available on January 1, 2025
- Award ID(s):
- 2112829
- PAR ID:
- 10543790
- Publisher / Repository:
- SISSA/Springer Science
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract We assess the current coverage and the future discovery potential of LHC searches for heavy Higgs bosons decaying into long-lived particles (LLPs), focusing primarily on the production of pairs of LLPs with hadronic final states. These signatures are generic in dark sectors where a heavy scalar decays into pairs of lighter states which subsequently mix with the Standard Model Higgs. We show that a handful of existing analyses provide broad coverage of LLP decay lengths ranging from millimeters to tens of meters, and explore the complementarity between searches for displaced and prompt final states in several simplified models. For both heavy singlet and heavy doublet scalars, LLP searches typically provide the leading sensitivity in current data and exhibit the strongest discovery potential in future LHC runs. We further translate the impact of these searches into the parameter space of various Twin Higgs models, demonstrating that LLP searches are a promising avenue for discovering a Twin Higgs with displaced decays. Finally, we propose a variety of additional search channels that would improve coverage of the second Higgs at the lifetime frontier.more » « less
-
A bstract The interpretation of Higgs data is typically based on different assumptions about whether there can be additional decay modes of the Higgs or if any couplings can be bounded by theoretical arguments. Going beyond these assumptions requires either a precision measurement of the Higgs width or an absolute measurement of a coupling to eliminate a flat direction in precision fits that occurs when
> 1, where$$ \left|{g}_{hVV}/{g}_{hVV}^{SM}\right| $$ V =W ± ,Z . In this paper we explore how well a high energy muon collider can test Higgs physics without having to make assumptions on the total width of the Higgs. In particular, we investigate off-shell methods for Higgs production used at the LHC and searches for invisible decays of the Higgs to see how powerful they are at a muon collider. We then investigate the theoretical requirements on a model which can exist in such a flat direction. Combining expected Higgs precision with other constraints, the most dangerous flat direction is described by generalized Georgi-Machacek models. We find that by combining direct searches with Higgs precision, a high energy muon collider can robustly test single Higgs precision down to the level without having to assume SM Higgs decays. Furthermore, it allows one to bound new contributions to the width at the sub-percent level as well. Finally, we comment on how even in this difficult flat direction for Higgs precision, a muon collider can robustly test or discover new physics in multiple ways. Expanding beyond simple coupling modifiers/EFTs, there is a large region of parameter space that muon colliders can explore for EWSB that is not probed with only standard Higgs precision observables.$$ \mathcal{O}\left(.1\%\right) $$ -
A bstract Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass 125 GeV decays into four leptons ( ℓ = e , μ ). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: H → XX/ZX → 4 ℓ , where the new boson X has a mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb − 1 at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into XX/ZX , improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where X is interpreted to be a dark boson.more » « less
-
A bstract Hidden sectors are ubiquitous in supergravity theories, in strings and in branes. Well motivated models such as the Stueckelberg hidden sector model could provide a candidate for dark matter. In such models, the hidden sector communicates with the visible sector via the exchange of a dark photon (dark Z ′) while dark matter is constituted of Dirac fermions in the hidden sector. Using data from collider searches and precision measurements of SM processes as well as the most recent limits from dark matter direct and indirect detection experiments, we perform a comprehensive scan over a wide range of the Z ′ mass and set exclusion bounds on the parameter space from sub-GeV to several TeV. We then discuss the discovery potential of an $$ \mathcal{O} $$ O (TeV) scale Z ′ at HL-LHC and the ability of future forward detectors to probe very weakly interacting sub-GeV Z ′ bosons. Our analysis shows that the parameter space in which a Z ′ can decay to hidden sector dark matter is severely constrained whereas limits become much weaker for a Z ′ with no dark decays. The analysis also favors a self-thermalized dark sector which is necessary to satisfy the dark matter relic density.more » « less