skip to main content

Title: Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti,Fe)O 3−δ -based fuel electrodes for electricity generation and hydrogen production
Sr(Ti 0.3 Fe 0.7 )O 3−δ (STF) and the associated exsolution electrodes Sr 0.95 (Ti 0.3 Fe 0.63 Ru 0.07 )O 3−δ (STFR), or Sr 0.95 (Ti 0.3 Fe 0.63 Ni 0.07 )O 3−δ (STFN) are alternatives to Ni-based cermet fuel electrodes for solid oxide electrochemical cells (SOCs). They can provide improved tolerance to redox cycling and fuel impurities, and may allow direct operation with hydrocarbon fuels. However, such perovskite-oxide-based electrodes present processing challenges for co-sintering with thin electrolytes to make fuel electrode supported SOCs. Thus, they have been mostly limited to electrolyte-supported SOCs. Here, we report the first example of the application of perovskite oxide fuel electrodes in novel oxygen electrode supported SOCs (OESCs) with thin YSZ electrolytes, and demonstrate their excellent performance. The OESCs have La 0.8 Sr 0.2 MnO 3−δ –Zr 0.92 Y 0.16 O 2−δ (LSM–YSZ) oxygen electrode-supports that are enhanced via infiltration of SrTi 0.3 Fe 0.6 Co 0.1 O 3−δ , while the fuel electrodes are either Ni-YSZ, STF, STFN, or STFR. Fuel cell power density as high as 1.12 W cm −2 is obtained at 0.7 V and 800 °C in humidified hydrogen and air with the STFR electrode, 60% higher than the more » same cell made with a Ni-YSZ electrode. Electrolysis current density as high as −1.72 A cm −2 is obtained at 1.3 V and 800 °C in 50% H 2 O to 50% H 2 mode; the STFR cell yields a value 72% higher than the same cell made with a Ni-YSZ electrode, and competitive with the widely used conventional Ni-YSZ-supported cells. The high performance is due in part to the low resistance of the thin YSZ electrolyte, and also to the low fuel electrode polarization resistance, which decreases with fuel electrode in the order: Ni-YSZ > STF > STFN > STFR. The high performance of the latter two electrodes is due to exsolution of catalytic metal nanoparticles; the results are discussed in terms of the microstructure and properties of each electrode material, and surface oxygen exchange resistance values are obtained over a range of conditions for STF, STFN, and STFN. The STF fuel electrodes also provide good stability during redox cycling. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Materials Chemistry A
Page Range or eLocation-ID:
25867 to 25879
Sponsoring Org:
National Science Foundation
More Like this
  1. Sr(Ti 1−x Fe x )O 3−δ (STF) has recently been explored as an oxygen electrode for solid oxide electrochemical cells (SOCs). Model thin film electrode studies show oxygen surface exchange rates that generally improve with increasing Fe content when x < 0.5, and are comparable to the best Co-containing perovskite electrode materials. Recent results on porous electrodes with the specific composition Sr(Ti 0.3 Fe 0.7 )O 3−δ show excellent electrode performance and stability, but other compositions have not been tested. Here we report results for porous electrodes with a range of compositions from x = 0.5 to 0.9. The polarization resistance decreases with increasing Fe content up to x = 0.7, but increases for further increases in x . This results from the interaction of two effects – the oxygen solid state diffusion coefficient increases with increasing x , but the electrode surface area and surface oxygen exchange rate decrease due to increased sinterability and Sr surface segregation for the Fe-rich compositions. Symmetric cells showed no degradation during 1000 h life tests at 700 °C even at a current density of 1.5 A cm −2 , showing that all the STF electrode compositions worked stably in both fuel cell modemore »and electrolysis modes. The excellent stability may be explained by X-ray Photoelectron Spectroscopy (XPS) results showing that the amount of surface segregated Sr did not change during the long-term testing, and by relatively low polarization resistances that help avoid electrode delamination.« less
  2. This paper addresses the use of Ce 0.8 Gd 0.2 O 2−δ (GDC) infiltration into the Ni–(Y 2 O 3 ) 0.08 (ZrO 2 ) 0.92 (YSZ) fuel electrode of solid oxide cells (SOCs) for improving their electrochemical performance in fuel cell and electrolysis operation. Although doped ceria infiltration into Ni–YSZ has recently been shown to improve the electrode performance and stability, the mechanisms defining how GDC impacts electrochemical characteristics are not fully delineated. Furthermore, the electrochemical characteristics have not yet been determined over the full range of conditions normally encountered in fuel cell and electrolysis operation. Here we present a study of both symmetric and full cells aimed at understanding the electrochemical mechanisms of GDC-modified Ni–YSZ over a wide range of fuel compositions and temperatures. Single-step GDC infiltration at an appropriate loading substantially reduced the polarization resistance of Ni–YSZ electrodes in electrolyte-supported cells, as measured using electrochemical impedance spectroscopy (EIS) at various temperatures (600–800 °C) in a range of H 2 O–H 2 mixtures (3–90 vol% H 2 O). Fuel-electrode-supported cells had significant concentration polarization due to the thick Ni–YSZ supports. A distribution of relaxation times approach is used to develop a physically-based electrochemical model; the results show thatmore »GDC reduces the reaction resistance associated with three-phase boundaries, but also appears to improve oxygen transport in the electrode. Increasing the H 2 O fraction in the H 2 –H 2 O fuel mixture reduced both the three-phase boundary resistance and the gas diffusion resistance for Ni–YSZ; with GDC infiltration, the electrode resistance showed less variation with fuel composition. GDC infiltration improved the performance of fuel-electrode-supported full cells, which yielded a maximum power density of 2.28 W cm −2 in fuel cell mode and an electrolysis current density at 1.3 V of 2.22 A cm −2 , both at 800 °C.« less
  3. Solid oxide cells (SOCs) have important applications as fuel cells and electrolyzers. The application for storage of renewable electricity is also becoming increasingly relevant; however, it is difficult to meet stringent area-specific resistance (ASR) and long-term stability targets needed to achieve required efficiency and cost. Here we show a new SOC that utilizes a very thin Gd-doped ceria (GDC)/yttria-stabilized zirconia (YSZ) bi-layer electrolyte, Ni–YSZ cell support with enhanced porosity, and electrode surface modification using PrO x and GDC nanocatalysts to achieve unprecedented low ASR values < 0.1 Ω cm 2 , fuel cell power density ∼3 W cm −2 , and electrolysis current density ∼4 A cm −2 at 800 °C. Besides this exceptionally high performance, fuel cell and electrolysis life tests suggest very promising stability in fuel cell and steam electrolysis modes. Electrochemical impedance spectroscopy analysis done using a novel impedance subtraction method shows how rate-limiting electrode processes are impacted by the new SOC materials and design.
  4. Redox stabilities of the hydrogen electrode with in situ exsolved Fe–Ni nanoparticles from Sr 2 Fe 1.4 Ni 0.1 Mo 0.5 O 6−δ (SFMNi) perovskite are studied by analyzing the evolution of the phase composition and morphology during the redox cycles. It is found that certain amount of the exsolved nanoparticles have been oxidized to the transition metal oxide (Ni,Fe)O instead of reincorporating into the parent perovskite lattice upon re-oxidizing at 800 °C in air. However, the (Ni,Fe)O secondary phases show no adverse effect on the subsequent reduction treatment. The redox reversibility mechanism is explained by the regular-solution model. The electrodes are almost fully recovered in the reducing atmosphere, and the symmetrical cells measured under 9.7% H 2 –3% H 2 O–87.3% N 2 conditions show a stable specific area polarization resistance of around 1.93 Ω cm 2 at 800 °C during 13 redox cycles. Single cells using the Ni–Fe nanoparticles structured electrode exhibit a stable electrode polarization resistance of about 0.598 Ω cm 2 at 800 °C under open circuit voltage conditions and a steady electrolysis current density of about −653 mA cm −2 at 1.5 V during the steam electrolysis process over 5 redox cycles. These results indicatemore »that the SFMNi material is a very promising electrode candidate for steam electrolysis application with robust redox reversibility.« less
  5. In this work, a robust solid oxide electrolysis cell with Sr 2 Fe 1.5 Mo 0.5 O 6−δ –Ce 0.8 Sm 0.2 O 1.9 (SFM–SDC) based electrodes has been utilized to verify the conceptual process of partial oxidation of methane (POM) assisted steam electrolysis, which can produce syngas and hydrogen simultaneously. When the cathode is fed with 74%H 2 –26%H 2 O and operated at 850 °C, the open circuit voltage (OCV), the minimum energy barrier required to overcome the oxygen partial gradient, is remarkably reduced from 0.940 to −0.012 V after changing the feed gas in the anode chamber from air to methane, indicating that the electricity consumption of the steam electrolysis process could be significantly reduced and compensated by the use of low grade thermal energy from external heat sources. It is found that after ruthenium (Ru) impregnation, the electrolysis current density of the electrolyzer is effectively enhanced from −0.54 to −1.06 A cm −2 at 0.6 V and 850 °C, while the electrode polarization resistance under OCV conditions and 850 °C is significantly decreased from 0.516 to 0.367 Ω cm 2 . Long-term durability testing demonstrates that no obvious degradation but a slight improvement is observed formore »the electrolyzer, which is possibly due to the activation of the SFM–SDC electrode during operation. These results indicate that the robust Ru infiltrated solid oxide electrolyzer is a very promising candidate for POM assisted steam electrolysis applications. Our result will provide insight to improve the electrode catalysts used in POM assisted steam electrolysis.« less