Abstract Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton‐exchange‐membrane fuel cells remains a grand challenge. Here, a high‐power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt‐doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X‐ray computed tomography verifies the well‐distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM‐free electrodes with improved performance and durability.
more »
« less
An Unbalanced Battle in Excellence: Revealing Effect of Ni/Co Occupancy on Water Splitting and Oxygen Reduction Reactions in Triple‐Conducting Oxides for Protonic Ceramic Electrochemical Cells
Abstract Porous electrodes that conduct electrons, protons, and oxygen ions with dramatically expanded catalytic active sites can replace conventional electrodes with sluggish kinetics in protonic ceramic electrochemical cells. In this work, a strategy is utilized to promote triple conduction by facilitating proton conduction in praseodymium cobaltite perovskite through engineering non‐equivalent B‐site Ni/Co occupancy. Surface infrared spectroscopy is used to study the dehydration behavior, which proves the existence of protons in the perovskite lattice. The proton mobility and proton stability are investigated by hydrogen/deuterium (H/D) isotope exchange and temperature‐programmed desorption. It is observed that the increased nickel replacement on the B‐site has a positive impact on proton defect stability, catalytic activity, and electrochemical performance. This doping strategy is demonstrated to be a promising pathway to increase catalytic activity toward the oxygen reduction and water splitting reactions. The chosen PrNi0.7Co0.3O3−δoxygen electrode demonstrates excellent full‐cell performance with high electrolysis current density of −1.48 A cm−2at 1.3 V and a peak fuel‐cell power density of 0.95 W cm−2at 600 °C and also enables lower‐temperature operations down to 350 °C, and superior long‐term durability.
more »
« less
- Award ID(s):
- 2119688
- PAR ID:
- 10369146
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 30
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Sr(Ti 0.3 Fe 0.7 )O 3−δ (STF) and the associated exsolution electrodes Sr 0.95 (Ti 0.3 Fe 0.63 Ru 0.07 )O 3−δ (STFR), or Sr 0.95 (Ti 0.3 Fe 0.63 Ni 0.07 )O 3−δ (STFN) are alternatives to Ni-based cermet fuel electrodes for solid oxide electrochemical cells (SOCs). They can provide improved tolerance to redox cycling and fuel impurities, and may allow direct operation with hydrocarbon fuels. However, such perovskite-oxide-based electrodes present processing challenges for co-sintering with thin electrolytes to make fuel electrode supported SOCs. Thus, they have been mostly limited to electrolyte-supported SOCs. Here, we report the first example of the application of perovskite oxide fuel electrodes in novel oxygen electrode supported SOCs (OESCs) with thin YSZ electrolytes, and demonstrate their excellent performance. The OESCs have La 0.8 Sr 0.2 MnO 3−δ –Zr 0.92 Y 0.16 O 2−δ (LSM–YSZ) oxygen electrode-supports that are enhanced via infiltration of SrTi 0.3 Fe 0.6 Co 0.1 O 3−δ , while the fuel electrodes are either Ni-YSZ, STF, STFN, or STFR. Fuel cell power density as high as 1.12 W cm −2 is obtained at 0.7 V and 800 °C in humidified hydrogen and air with the STFR electrode, 60% higher than the same cell made with a Ni-YSZ electrode. Electrolysis current density as high as −1.72 A cm −2 is obtained at 1.3 V and 800 °C in 50% H 2 O to 50% H 2 mode; the STFR cell yields a value 72% higher than the same cell made with a Ni-YSZ electrode, and competitive with the widely used conventional Ni-YSZ-supported cells. The high performance is due in part to the low resistance of the thin YSZ electrolyte, and also to the low fuel electrode polarization resistance, which decreases with fuel electrode in the order: Ni-YSZ > STF > STFN > STFR. The high performance of the latter two electrodes is due to exsolution of catalytic metal nanoparticles; the results are discussed in terms of the microstructure and properties of each electrode material, and surface oxygen exchange resistance values are obtained over a range of conditions for STF, STFN, and STFN. The STF fuel electrodes also provide good stability during redox cycling.more » « less
-
Perovskite materials are used for high temperature electrochemical applications such as solid oxide fuel cells (SOFC) and electrolyzers due to their tunable conductivity and catalytic activity. However, high temperature operation poses significant challenges in both fabrication and durable operation that is further complicated by the operating environment. We studied barium niobates with various A and B site dopants. These doped niobates showed enhanced thermochemical stability in SOFC relevant conditions and catalytic activity towards methane activation. The redox behavior of the Nb4+/5+couple seem to be at a key reason behind this redox stability while the size and electronegativity of the dopants affect the electrical properties. The chemical stability was analyzed by TGA measurements followed by analysis of the perovskite powders using PXRD measurements. Impedance measurements were utilized to analyze their electrical conductivity. Our results demonstrate doped barium niobates as a promising candidate for stable operation in high temperature electrochemical applications.more » « less
-
Abstract A new isolation protocol was recently reported for highly purified metallic FullertubesD5h‐C90,D3d‐C96, andD5d‐C100,which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60, C70(spheroidal fullerenes), and C90, C96, and C100(tubular fullerenes) using a combination of experimental and theoretical approaches. C96(a metal‐free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state‐of‐the‐art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm−2using C96as a modified cathode in a proton‐exchange membrane fuel cell, comparable to other recently reported efficient metal‐free catalysts. Combined band structure (experimentally calculated) and free‐energy (DFT) investigations show that both favorable energy‐level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96.more » « less
-
Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H2/air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm−2in H2/air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C3N4, leading to a micro‐mesoporous substrate.more » « less
An official website of the United States government
