skip to main content


Title: Biomedical Interpretable Entity Representations
Pre-trained language models induce dense entity representations that offer strong performance on entity-centric NLP tasks, but such representations are not immediately interpretable. This can be a barrier to model uptake in important domains such as biomedicine.There has been recent work on general interpretable representation learning (Onoe and Durrett, 2020), but these domain-agnostic representations do not readily transfer to the important domain of biomedicine. In this paper, we create a new entity type system and train-ing set from a large corpus of biomedical texts by mapping entities to concepts in a medical ontology, and from these to Wikipedia pages whose categories are our types. From this map-ping we deriveBiomedical Interpretable Entity Representations(BIERs), in which dimensions correspond to fine-grained entity types, and values are predicted probabilities that a given entity is of the corresponding type. We propose a novel method that exploits BIER’s final sparse and intermediate dense representations to facilitate model and entity type debugging. We show that BIERs achieve strong performance in biomedical tasks including named entity disambiguation and entity linking, and we provide error analysis to highlight the utility of their interpretability, particularly in low-supervision settings. Finally, we provide our induced 68K biomedical type system, the corresponding 37 million triples of derived data used to train BIER models and our best per-forming model.  more » « less
Award ID(s):
1901117 1750978
NSF-PAR ID:
10231022
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Association for Computational Linguistics (ACL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In standard methodology for natural language processing, entities in text are typically embedded in dense vector spaces with pre-trained models. The embeddings produced this way are effective when fed into downstream models, but they require end-task fine-tuning and are fundamentally difficult to interpret. In this paper, we present an approach to creating entity representations that are human readable and achieve high performance on entity-related tasks out of the box. Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types, indicating the confidence of a typing model’s decision that the entity belongs to the corresponding type. We obtain these representations using a fine-grained entity typing model, trained either on supervised ultra-fine entity typing data (Choi et al., 2018) or distantly-supervised examples from Wikipedia. On entity probing tasks involving recognizing entity identity, our embeddings used in parameter-free downstream models achieve competitive performance with ELMo- and BERT-based embeddings in trained models. We also show that it is possible to reduce the size of our type set in a learning-based way for particular domains. Finally, we show that these embeddings can be post-hoc modified through a small number of rules to incorporate domain knowledge and improve performance. 
    more » « less
  2. Abstract

    Natural language processing (NLP) techniques can enhance our ability to interpret plant science literature. Many state-of-the-art algorithms for NLP tasks require high-quality labelled data in the target domain, in which entities like genes and proteins, as well as the relationships between entities, are labelled according to a set of annotation guidelines. While there exist such datasets for other domains, these resources need development in the plant sciences. Here, we present the Plant ScIenCe KnowLedgE Graph (PICKLE) corpus, a collection of 250 plant science abstracts annotated with entities and relations, along with its annotation guidelines. The annotation guidelines were refined by iterative rounds of overlapping annotations, in which inter-annotator agreement was leveraged to improve the guidelines. To demonstrate PICKLE’s utility, we evaluated the performance of pretrained models from other domains and trained a new, PICKLE-based model for entity and relation extraction (RE). The PICKLE-trained models exhibit the second-highest in-domain entity performance of all models evaluated, as well as a RE performance that is on par with other models. Additionally, we found that computer science-domain models outperformed models trained on a biomedical corpus (GENIA) in entity extraction, which was unexpected given the intuition that biomedical literature is more similar to PICKLE than computer science. Upon further exploration, we established that the inclusion of new types on which the models were not trained substantially impacts performance. The PICKLE corpus is, therefore, an important contribution to training resources for entity and RE in the plant sciences.

     
    more » « less
  3. null (Ed.)
    Developing algorithms that are able to generalize to a novel task given only a few labeled examples represents a fundamental challenge in closing the gap between machine- and human-level performance. The core of human cognition lies in the structured, reusable concepts that help us to rapidly adapt to new tasks and provide reasoning behind our decisions. However, existing meta-learning methods learn complex representations across prior labeled tasks without imposing any structure on the learned representations. Here we propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions. Instead of learning a joint unstructured metric space, COMET learns mappings of high-level concepts into semi-structured metric spaces, and effectively combines the outputs of independent concept learners. We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation on a novel dataset from a biological domain developed in our work. COMET significantly outperforms strong meta-learning baselines, achieving 6–15% relative improvement on the most challenging 1-shot learning tasks, while unlike existing methods providing interpretations behind the model’s predictions. 
    more » « less
  4. null (Ed.)
    Developing algorithms that are able to generalize to a novel task given only a few labeled examples represents a fundamental challenge in closing the gap between machine- and human-level performance. The core of human cognition lies in the structured, reusable concepts that help us to rapidly adapt to new tasks and provide reasoning behind our decisions. However, existing meta-learning methods learn complex representations across prior labeled tasks without imposing any structure on the learned representations. Here we propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions. Instead of learning a joint unstructured metric space, COMET learns mappings of high-level concepts into semi-structured metric spaces, and effectively combines the outputs of independent concept learners. We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation on a novel dataset from a biological domain developed in our work. COMET significantly outperforms strong meta-learning baselines, achieving 6–15% relative improvement on the most challenging 1-shot learning tasks, while unlike existing methods providing interpretations behind the model’s predictions. 
    more » « less
  5. Abstract

    Advances in artificial intelligence have raised a basic question about human intelligence: Is human reasoning best emulated by applying task‐specific knowledge acquired from a wealth of prior experience, or is it based on the domain‐general manipulation and comparison of mental representations? We address this question for the case of visual analogical reasoning. Using realistic images of familiar three‐dimensional objects (cars and their parts), we systematically manipulated viewpoints, part relations, and entity properties in visual analogy problems. We compared human performance to that of two recent deep learning models (Siamese Network and Relation Network) that were directly trained to solve these problems and to apply their task‐specific knowledge to analogical reasoning. We also developed a new model using part‐based comparison (PCM) by applying a domain‐general mapping procedure to learned representations of cars and their component parts. Across four‐term analogies (Experiment 1) and open‐ended analogies (Experiment 2), the domain‐general PCM model, but not the task‐specific deep learning models, generated performance similar in key aspects to that of human reasoners. These findings provide evidence that human‐like analogical reasoning is unlikely to be achieved by applying deep learning with big data to a specific type of analogy problem. Rather, humans do (and machines might) achieve analogical reasoning by learning representations that encode structural information useful for multiple tasks, coupled with efficient computation of relational similarity.

     
    more » « less