Breast cancer is the leading cancer affecting women globally. Despite deep learning models making significant strides in diagnosing and treating this disease, ensuring fair outcomes across diverse populations presents a challenge, particularly when certain demographic groups are underrepresented in training datasets. Addressing the fairness of AI models across varied demographic backgrounds is crucial. This study analyzes demographic representation within the publicly accessible Emory Breast Imaging Dataset (EMBED), which includes de-identified mammography and clinical data. We spotlight the data disparities among racial and ethnic groups and assess the biases in mammography image classification models trained on this dataset, specifically ResNet-50 and Swin Transformer V2. Our evaluation of classification accuracies across these groups reveals significant variations in model performance, highlighting concerns regarding the fairness of AI diagnostic tools. This paper emphasizes the imperative need for fairness in AI and suggests directions for future research aimed at increasing the inclusiveness and dependability of these technologies in healthcare settings. Code is available at: https://github.com/kuanhuang0624/EMBEDFairModels.
more »
« less
On the Impact of Random Seeds on the Fairness of Clinical Classifiers
Recent work has shown that fine-tuning large networks is surprisingly sensitive to changes in random seed(s). We explore the implications of this phenomenon for model fairness across demographic groups in clinical prediction tasks over electronic health records (EHR) in MIMIC-III —— the standard dataset in clinical NLP research. Apparent subgroup performance varies substantially for seeds that yield similar overall performance, although there is no evidence of a trade-off between overall and subgroup performance. However, we also find that the small sample sizes inherent to looking at intersections of minority groups and somewhat rare conditions limit our ability to accurately estimate disparities. Further, we find that jointly optimizing for high overall performance and low disparities does not yield statistically significant improvements. Our results suggest that fairness work using MIMIC-III should carefully account for variations in apparent differences that may arise from stochasticity and small sample sizes.
more »
« less
- Award ID(s):
- 1901117
- PAR ID:
- 10231027
- Date Published:
- Journal Name:
- North American Chapter of the Association for Computational Linguistics (NAACL)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Much of the work in the field of group fairness addresses disparities between predefined groups based on protected features such as gender, age, and race, which need to be available at train, and often also at test, time. These approaches are static and retrospective, since algorithms designed to protect groups identified a priori cannot anticipate and protect the needs of different at-risk groups in the future. In this work we analyze the space of solutions for worst-case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a method that leverages no-regret dynamics to recover a fair minimax classifier that reduces worst-case risk of any potential subgroup of sufficient size, and guarantees that the remaining population receives the best possible level of service. BPF addresses fairness beyond demographics, that is, it does not rely on predefined notions of at-risk groups, neither at train nor at test time. Our experimental results show that the proposed framework improves worst-case risk in multiple standard datasets, while simultaneously providing better levels of service for the remaining population, in comparison to competing methods.more » « less
-
Abstract Applying machine learning to clinical outcome prediction is challenging due to imbalanced datasets and sensitive tasks that contain rare yet critical outcomes and where equitable treatment across diverse patient groups is essential. Despite attempts, biases in predictions persist, driven by disparities in representation and exacerbated by the scarcity of positive labels, perpetuating health inequities. This paper introduces , a synthetic data generation approach leveraging large language models, to address these issues. enhances algorithmic performance and reduces bias by creating realistic, anonymous synthetic patient data that improves representation and augments dataset patterns while preserving privacy. Through experiments on multiple datasets, we demonstrate that boosts mortality prediction performance across diverse subgroups, achieving up to a 21% improvement in F1 Score without requiring additional data or altering downstream training pipelines. Furthermore, consistently reduces subgroup performance gaps, as shown by universal improvements in performance and fairness metrics across four experimental setups.more » « less
-
Welfare measures overall utility across a population, whereas malfare measures overall disutility, and the social planner’s problem can be cast either as maximizing the former or minimizing the latter. We show novel bounds on the expectations and tail probabilities of estimators of welfare, malfare, and regret of per-group (dis)utility values, where estimates are made from a finite sample drawn from each group. In particular, we consider estimating these quantities for individual functions (e.g., allocations or classifiers) with standard probabilistic bounds, and optimizing and bounding generalization error over hypothesis classes (i.e., we quantify overfitting) using Rademacher averages. We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit to these groups, thus even models that seem fair in training can be systematically biased against such groups. We argue that this effect can be mitigated by ensuring sufficient sample sizes for each group, and our sample complexity analysis characterizes these sample sizes. Motivated by these conclusions, we present progressive sampling algorithms to efficiently optimize various fairness objectives.more » « less
-
Kearns, Neel, Roth, and Wu [ICML 2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across protected groups), but then asks that this constraint hold over an exponentially or infinitely large collection of subgroups defined by a class of functions with bounded VC dimension. They give an algorithm guaranteed to learn subject to this constraint, under the condition that it has access to oracles for perfectly learning absent a fairness constraint. In this paper, we undertake an extensive empirical evaluation of the algorithm of Kearns et al. On four real datasets for which fairness is a concern, we investigate the basic convergence of the algorithm when instantiated with fast heuristics in place of learning oracles, measure the tradeoffs between fairness and accuracy, and compare this approach with the recent algorithm of Agarwal, Beygelzeimer, Dudik, Langford, and Wallach [ICML 2018], which implements weaker and more traditional marginal fairness constraints defined by individual protected attributes. We find that in general, the Kearns et al. algorithm converges quickly, large gains in fairness can be obtained with mild costs to accuracy, and that optimizing accuracy subject only to marginal fairness leads to classifiers with substantial subgroup unfairness. We also provide a number of analyses and visualizations of the dynamics and behavior of the Kearns et al. algorithm. Overall we find this algorithm to be effective on real data, and rich subgroup fairness to be a viable notion in practicemore » « less
An official website of the United States government

