skip to main content


Title: On the Impact of Random Seeds on the Fairness of Clinical Classifiers
Recent work has shown that fine-tuning large networks is surprisingly sensitive to changes in random seed(s). We explore the implications of this phenomenon for model fairness across demographic groups in clinical prediction tasks over electronic health records (EHR) in MIMIC-III —— the standard dataset in clinical NLP research. Apparent subgroup performance varies substantially for seeds that yield similar overall performance, although there is no evidence of a trade-off between overall and subgroup performance. However, we also find that the small sample sizes inherent to looking at intersections of minority groups and somewhat rare conditions limit our ability to accurately estimate disparities. Further, we find that jointly optimizing for high overall performance and low disparities does not yield statistically significant improvements. Our results suggest that fairness work using MIMIC-III should carefully account for variations in apparent differences that may arise from stochasticity and small sample sizes.  more » « less
Award ID(s):
1901117
NSF-PAR ID:
10231027
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
North American Chapter of the Association for Computational Linguistics (NAACL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noisy training labels can hurt model performance. Most approaches that aim to address label noise assume label noise is independent from the input features. In practice, however, label noise is often feature or \textit{instance-dependent}, and therefore biased (i.e., some instances are more likely to be mislabeled than others). E.g., in clinical care, female patients are more likely to be under-diagnosed for cardiovascular disease compared to male patients. Approaches that ignore this dependence can produce models with poor discriminative performance, and in many healthcare settings, can exacerbate issues around health disparities. In light of these limitations, we propose a two-stage approach to learn in the presence instance-dependent label noise. Our approach utilizes \textit{\anchor points}, a small subset of data for which we know the observed and ground truth labels. On several tasks, our approach leads to consistent improvements over the state-of-the-art in discriminative performance (AUROC) while mitigating bias (area under the equalized odds curve, AUEOC). For example, when predicting acute respiratory failure onset on the MIMIC-III dataset, our approach achieves a harmonic mean (AUROC and AUEOC) of 0.84 (SD [standard deviation] 0.01) while that of the next best baseline is 0.81 (SD 0.01). Overall, our approach improves accuracy while mitigating potential bias compared to existing approaches in the presence of instance-dependent label noise. 
    more » « less
  2. null (Ed.)
    Much of the work in the field of group fairness addresses disparities between predefined groups based on protected features such as gender, age, and race, which need to be available at train, and often also at test, time. These approaches are static and retrospective, since algorithms designed to protect groups identified a priori cannot anticipate and protect the needs of different at-risk groups in the future. In this work we analyze the space of solutions for worst-case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a method that leverages no-regret dynamics to recover a fair minimax classifier that reduces worst-case risk of any potential subgroup of sufficient size, and guarantees that the remaining population receives the best possible level of service. BPF addresses fairness beyond demographics, that is, it does not rely on predefined notions of at-risk groups, neither at train nor at test time. Our experimental results show that the proposed framework improves worst-case risk in multiple standard datasets, while simultaneously providing better levels of service for the remaining population, in comparison to competing methods. 
    more » « less
  3. Kearns, Neel, Roth, and Wu [ICML 2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across protected groups), but then asks that this constraint hold over an exponentially or infinitely large collection of subgroups defined by a class of functions with bounded VC dimension. They give an algorithm guaranteed to learn subject to this constraint, under the condition that it has access to oracles for perfectly learning absent a fairness constraint. In this paper, we undertake an extensive empirical evaluation of the algorithm of Kearns et al. On four real datasets for which fairness is a concern, we investigate the basic convergence of the algorithm when instantiated with fast heuristics in place of learning oracles, measure the tradeoffs between fairness and accuracy, and compare this approach with the recent algorithm of Agarwal, Beygelzeimer, Dudik, Langford, and Wallach [ICML 2018], which implements weaker and more traditional marginal fairness constraints defined by individual protected attributes. We find that in general, the Kearns et al. algorithm converges quickly, large gains in fairness can be obtained with mild costs to accuracy, and that optimizing accuracy subject only to marginal fairness leads to classifiers with substantial subgroup unfairness. We also provide a number of analyses and visualizations of the dynamics and behavior of the Kearns et al. algorithm. Overall we find this algorithm to be effective on real data, and rich subgroup fairness to be a viable notion in practice 
    more » « less
  4. In this paper, we interrogate whether data quality issues track demographic characteristics such as sex, race and age, and whether automated data cleaning — of the kind commonly used in production ML systems — impacts the fairness of predictions made by these systems. To the best of our knowledge, the impact of data cleaning on fairness in downstream tasks has not been investigated in the literature.We first analyze the tuples flagged by common error detection strategies in five research datasets. We find that, while specific data quality issues, such as higher rates of missing values, are associated with membership in historically disadvantaged groups, poor data quality does not generally track demographic group membership. As a follow-up, we conduct a large-scale empirical study on the impact of automated data cleaning on fairness, involving more than 26,000 model evaluations on five datasets. We observe that, while automated data cleaning has an insignificant impact on both accuracy and fairness in the majority of cases, it is more likely to worsen fairness than to improve it, especially when the cleaning techniques are not carefully chosen. This finding is both significant and worrying, given that it potentially implicates many production ML systems. We make our code and experimental results publicly available.The analysis we conducted in this paper is difficult, primarily because it requires that we think holistically about disparities in data quality, disparities in the effectiveness of data cleaning methods, and impacts of such disparities on ML model performance for different demographic groups. Such holistic analysis can and should be supported with the help of data engineering research. Towards this goal, we envision the development of fairness-aware data cleaning methods, and their integration into complex pipelines for ML-based decision making. 
    more » « less
  5. Welfare measures overall utility across a population, whereas malfare measures overall disutility, and the social planner’s problem can be cast either as maximizing the former or minimizing the latter. We show novel bounds on the expectations and tail probabilities of estimators of welfare, malfare, and regret of per-group (dis)utility values, where estimates are made from a finite sample drawn from each group. In particular, we consider estimating these quantities for individual functions (e.g., allocations or classifiers) with standard probabilistic bounds, and optimizing and bounding generalization error over hypothesis classes (i.e., we quantify overfitting) using Rademacher averages. We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit to these groups, thus even models that seem fair in training can be systematically biased against such groups. We argue that this effect can be mitigated by ensuring sufficient sample sizes for each group, and our sample complexity analysis characterizes these sample sizes. Motivated by these conclusions, we present progressive sampling algorithms to efficiently optimize various fairness objectives. 
    more » « less