skip to main content


Title: Variability in above- and belowground carbon stocks in a Siberian larch watershed
Abstract. Permafrost soils store between 1330 and 1580 Pg carbon (C), which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %), with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV)  =  0.35 between stands) than in the top 30 cm (CV  =  0.14) or soil profile to 1 m (CV  =  0.20). Combined active-layer and deep frozen deposits (surface – 15 m) contained 205 kg C m−2 (yedoma, non-ice wedge) and 331 kg C m−2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (8 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was negatively related to stand age, and soil C density (top 10 cm) was positively related to soil moisture and negatively related to moss and lichen cover. These results suggest that, as the climate warms, changes in stand age and structure may be as important as direct climate effects on belowground environmental conditions and permafrost C vulnerability.  more » « less
Award ID(s):
1417700
NSF-PAR ID:
10231174
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
14
Issue:
18
ISSN:
1726-4189
Page Range / eLocation ID:
4279 to 4294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fire frequency is increasing with climate warming in the boreal regions of interior Alaska, with short fire return intervals (< 50 years) becoming more common. Recent studies suggest these “reburns” will reduce the insulating surface organic layer (SOL) and seedbanks, inhibiting black spruce regeneration and increasing deciduous cover. These changes are projected to amplify soil warming, increasing mineral soil organic carbon (SOC) decomposition rates, and impair re-establishment of understorey vegetation and the SOL. We examined how reburns changed soil temperature, heterotrophic soil respiration (RH), and understorey gross primary production (GPP), and related these to shifts in vegetation composition and SOL depths. Two distinct burn complexes previously covered by spruce were measured; both included areas burned 1x, 2x, and 3x over 60 years and mature (≈ 90 year old) spruce forests underlain by permafrost. A 2.7 °C increase in annual near-surface soil temperatures from 1x to 3x burns was correlated with a decrease in SOL depths and a 1.9 Mg C ha−1increase in annual RH efflux. However, near-surface soil warming accounted for ≤ 23% of higher RH efflux; increases in deciduous overstorey vegetation and root biomass with reburning better correlated with RH than soil temperature. Reburning also warmed deeper soils and reduced the biomass and GPP of understory plants, lessening their potential to offset elevated RH and contribute to SOL development. This suggests that reburning led to losses of mineral SOC previously stored in permafrost due to warming soils and changes in vegetation composition, illustrating how burn frequency creates pathways for accelerated regional C loss.

     
    more » « less
  2. Abstract

    As climate warms, tree density at the taiga–tundra ecotone (TTE) is expected to increase, which may intensify competition for belowground resources in this nitrogen (N)‐limited environment. To determine the impacts of increased tree density on N cycling and productivity, we examined edaphic properties indicative of soil N availability along with aboveground and belowground tree‐level traits and stand characteristics related to carbon (C) and N cycling across a tree density gradient of monodominant larch (Larix cajanderi) at the TTE in far northeastern Siberia. We found no consistent evidence from soil, tree, or stand‐level N cycling characteristics of lower N availability or greater intraspecific competition for N with increased density. Active layer thickness declined, but resin‐sorbed N and soil organic layer thickness did not covary with increased tree density. There was, however, greater allocation belowground to stand‐level coarse and fine roots with increased tree density, an allocation pattern suggestive of limited soil resources. Foliar traits related to C (%C, δ13C, and resorption) were responsive to density indicating the importance of non‐nutrient resources, like light, to foliar stoichiometry. As tree density increased and individual trees had lower productivity, tree‐level N and biomass pools aboveground and belowground declined tracking decreases in N uptake, N resorption, N use efficiency, and allocation to slow cycling tissues like wood. At the stand level, our findings show high N turnover with increased N acquisition, allocation to short‐lived tissues with relatively high N content and reduced N residence time, and greater stand productivity as tree density increased. Yet, these positive relationships were curtailed at the highest tree densities. Our observations of shifts in biomass, C and N allocation, and loss aboveground, along with greater root density with increased tree density, could have strong impacts on C and N cycling and should be represented in models of TTE dynamics and feedbacks to climate.

     
    more » « less
  3. Abstract

    Transpiration and stomatal conductance in deciduous needleleaf boreal forests of northern Siberia can be highly sensitive to water stress, permafrost thaw, and atmospheric dryness. Additionally, north‐eastern Siberian boreal forests are fire‐driven, and larch (Larixspp.) are the sole tree species. We examined differences in tree water use, stand characteristics, and stomatal responses to environmental drivers between high and low tree density stands that burned 76 years ago in north‐eastern Siberia. Our results provide process‐level insight to climate feedbacks related to boreal forest productivity, water cycles, and permafrost across Arctic regions. The high density stand had shallower permafrost thaw depths and deeper moss layers than the low density stand. Rooting depths and shallow root biomass were similar between stands. Daily transpiration was higher on average in the high‐density stand 0.12 L m−2 day−1(SE: 0.004) compared with the low density stand 0.10 L m−2 day−1(SE: 0.001) throughout the abnormally wet summer of 2016. Transpiration rates tended to be similar at both stands during the dry period in 2017 in both stands of 0.10 L m−2 day−1(SE: 0.002). The timing of precipitation impacted stomatal responses to environmental drivers, and the high density stand was more dependent on antecedent precipitation that occurred over longer periods in the past compared with the low density stand. Post‐fire tree density differences in plant–water relations may lead to different trajectories in plant mortality, water stress, and ecosystem water cycles across Siberian landscapes.

     
    more » « less
  4. Summary

    Decades of atmospheric nitrogen (N) deposition in the northeastern USA have enhanced this globally important forest carbon (C) sink by relieving N limitation. While many N fertilization experiments found increased forest C storage, the mechanisms driving this response at the ecosystem scale remain uncertain.

    Following the optimal allocation theory, augmented N availability may reduce belowground C investment by trees to roots and soil symbionts. To test this prediction and its implications on soil biogeochemistry, we constructed C and N budgets for a long‐term, whole‐watershed N fertilization study at the Fernow Experimental Forest, WV, USA.

    Nitrogen fertilization increased C storage by shifting C partitioning away from belowground components and towards aboveground woody biomass production. Fertilization also reduced the C cost of N acquisition, allowing for greater C sequestration in vegetation. Despite equal fine litter inputs, the C and N stocks and C : N ratio of the upper mineral soil were greater in the fertilized watershed, likely due to reduced decomposition of plant litter.

    By combining aboveground and belowground data at the watershed scale, this study demonstrates how plant C allocation responses to N additions may result in greater C storage in both vegetation and soil.

     
    more » « less
  5. Abstract

    Phosphorus (P) limits or co‐limits plant and microbial life in multiple ecosystems, including the arctic tundra. Although current global carbon (C) models focus on the coupling between soil nitrogen (N) and C, ecosystem P response to climate warming may also influence the global C cycle. Permafrost soils may see enhanced or reduced P availability under climate warming through multiple mechanisms including changing litter inputs through plant community change, changing plant–microbial dynamics, altered rates of mineralization of soil organic P through increased microbial activity, and newly exposed mineral‐bound P via deeper thaw. We investigated the effect of long‐term warming on plant leaf, multiple soil and microbial C, N, and P pools, and microbial extracellular enzyme activities, in Alaskan tundra plots underlain by permafrost. Here, we show that 25 yr of experimental summer warming increases community‐level plant leaf P through changing community composition to favour relatively P‐rich plant species. However, despite associated increases in P‐rich litter inputs, we found only a few responses in the belowground pools of P available for plant and microbial uptake, including a weak positive response for citric acid–extractable PO4in the surface soil, a decrease in microbial biomass P, and no change in soil P (or C or N) stocks. This weak, neutral, or negative belowground P response to warming despite enhanced litter P inputs is consistent with a growing number of studies in the arctic tundra that find no long‐term response of soil C and N stocks to warming.

     
    more » « less