skip to main content


Title: Asymmetries in ionization of atomic superposition states by ultrashort laser pulses
Abstract Progress in ultrafast science allows for probing quantum superposition states with ultrashort laser pulses in the new regime where several linear and nonlinear ionization pathways compete. Interferences of pathways can be observed in the photoelectron angular distribution and in the past they have been analyzed for atoms and molecules in a single quantum state via anisotropy and asymmetry parameters. Those conventional parameters, however, do not provide comprehensive tools for probing superposition states in the emerging research area of bright and ultrashort light sources, such as free-electron lasers and high-order harmonic generation. We propose a new set of generalized asymmetry parameters which are sensitive to interference effects in the photoionization and the interplay of competing pathways as the laser pulse duration is shortened and the laser intensity is increased. The relevance of the parameters is demonstrated using results of state-of-the-art numerical solutions of the time-dependent Schrödinger equation for ionization of helium atom and neon atom.  more » « less
Award ID(s):
1734006
NSF-PAR ID:
10231201
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit 1–3  set by projections of individual atoms. Large amounts of entanglement 4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles 4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity $$3\,.\,{4}_{-0.9}^{+1.1}$$ 3 . 4 − 0.9 + 1.1  dB and $$2\,.\,{5}_{-0.6}^{+0.6}$$ 2 . 5 − 0.6 + 0.6  dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity $$1\,.\,{7}_{-0.5}^{+0.5}$$ 1 . 7 − 0.5 + 0.5  dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors 17,18 , searches for new physics, particles and fields 19–23 , future advanced gravitational wave detectors 24,25 and accessing beyond mean-field quantum many-body physics 26–30 . 
    more » « less
  2. null (Ed.)
    Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol−)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level. 
    more » « less
  3. null (Ed.)
    Abstract Ionization of laser-dressed atomic helium is investigated with focus on photoelectron angular distributions stemming from two-color multi-photon excited states. The experiment combines extreme ultraviolet (XUV) with infrared (IR) radiation, while the relative polarization and the temporal delay between the pulses can be varied. By means of an XUV photon energy scan over several electronvolts, we get access to excited states in the dressed atom exhibiting various binding energies, angular momenta, and magnetic quantum numbers. Furthermore, varying the relative polarization is employed as a handle to switch on and off the population of certain states that are only accessible by two-photon excitation. In this way, photoemission can be suppressed for specific XUV photon energies. Additionally, we investigate the dependence of the photoelectron angular distributions on the IR laser intensity. At our higher IR intensities, we start leaving the simple multi-photon ionization regime. The interpretation of the experimental results is supported by numerically solving the time-dependent Schrödinger equation in a single-active-electron approximation. Graphic abstract 
    more » « less
  4. Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations. This superposition results in charge migration between the CC π orbital and the iodine π -type lone pair which can be monitored by strong field ionization with short, intense probe pulses. Strong field ionization of the X and A states of HCCI cation was simulated with time-dependent configuration interaction using singly ionized configurations and singly excited, singly ionized configurations (TD-CISD-IP) and an absorbing boundary. Studies with static fields were used to obtain the 3-dimensional angular dependence of instantaneous ionization rates by strong fields and the orbitals involved in producing the cations and dications. The frequency of charge oscillation is determined by the energy separation of the X and A states; this separation can change depending on the direction and strength of the field. Furthermore, fields along the molecular axis can cause extensive mixing between the field-free X and A configurations. For coherent superpositions of the X and A states, the charge oscillations are characterized by two frequencies–the driving frequency of the laser field of the probe pulse and the intrinsic frequency due to the energy separation between the X and A states. For linear and circularly polarized pulses, the ionization rates show marked differences that depend on the polarization direction of the pulse, the carrier envelope phase and initial phase of the superposition. Varying the initial phase of the superposition at the beginning of the probe pulse is analogous to changing the delay between the pump and probe pulses. The charge oscillation in the coherent superposition of the X and A states results in maxima and minima in the ionization yield as a function of the superposition phase. 
    more » « less
  5. Abstract

    Protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices are introduced. These qubits are formed from two‐atom spin superposition states that create a decoherence‐free subspace immune to stray magnetic fields, dramatically improving coherence times while still enjoying the single‐site addressability and Feshbach resonance control of state‐of‐the‐art alkali atom systems. The protocol requires no continuous driving or spin‐dependent potentials, and instead relies upon the population of a higher motional band to realize naturally tunable in‐site exchange and cross‐site superexchange interactions. As a proof‐of‐principle example of their utility for entanglement generation for quantum computation, it is shown that the cross‐site superexchange interactions can be used to engineer 1D cluster states. Explicit protocols for experimental preparation and manipulation of the qubits are also discussed, as well as methods for measuring more complex quantities such as out‐of‐time‐ordered correlation functions (OTOCs).

     
    more » « less