skip to main content


Title: PTMViz: a tool for analyzing and visualizing histone post translational modification data
Abstract Background

Histone post-translational modifications (PTMs) play an important role in our system by regulating the structure of chromatin and therefore contribute to the regulation of gene and protein expression. Irregularities in histone PTMs can lead to a variety of different diseases including various forms of cancer. Histone modifications are analyzed using high resolution mass spectrometry, which generate large amounts of data that requires sophisticated bioinformatics tools for analysis and visualization. PTMViz is designed for downstream differential abundance analysis and visualization of both protein and/or histone modifications.

Results

PTMViz provides users with data tables and visualization plots of significantly differentiated proteins and histone PTMs between two sample groups. All the data is packaged into interactive data tables and graphs using the Shiny platform to help the user explore the results in a fast and efficient manner to assess if changes in the system are due to protein abundance changes or epigenetic changes. In the example data provided, we identified several proteins differentially regulated in the dopaminergic pathway between mice treated with methamphetamine compared to a saline control. We also identified histone post-translational modifications including histone H3K9me, H3K27me3, H4K16ac, and that were regulated due to drug exposure.

Conclusions

Histone modifications play an integral role in the regulation of gene expression. PTMViz provides an interactive platform for analyzing proteins and histone post-translational modifications from mass spectrometry data in order to quickly identify differentially expressed proteins and PTMs.

 
more » « less
Award ID(s):
1946391
NSF-PAR ID:
10231220
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
22
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post‐translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single‐site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.

     
    more » « less
  2. Abstract

    Histone post‐translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP‐seq) is a powerful tool to profile histone PTMsin vivo. This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies. While mass spectrometry (MS)–based proteomic approaches to quantitatively measure histone PTMs have been developed in mammals and several other model organisms, such methods are currently not readily available in plants. One major challenge for the implementation of such methods in plants has been the difficulty in isolating sufficient amounts of pure, high‐quality histones, a step rendered difficult by the presence of the cell wall. Here, we developed a high‐yielding histone extraction and purification method optimized forArabidopsis thalianathat can be used to obtain high‐quality histones for MS. In contrast to other methods used in plants, this approach is relatively simple, and does not require membranes or additional specialized steps, such as gel excision or chromatography, to extract highly purified histones. We also describe methods for producing MS‐ready histone peptides through chemical labeling and digestion. Finally, we describe an optimized method to quantify and analyze the resulting histone PTM data using a modified version of EpiProfile 2.0 for Arabidopsis. In all, the workflow described here can be used to measure changes to histone PTMs resulting from various treatments, stresses, and time courses, as well as in different mutant lines. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Nuclear isolation and histone acid extraction

    Basic Protocol 2: Peptide labeling, digestion, and desalting

    Basic Protocol 3: Histone HPLC‐MS/MS and data analysis

     
    more » « less
  3. Abstract

    Characterization of histone proteoforms with various post‐translational modifications (PTMs) is critical for a better understanding of functions of histone proteoforms in epigenetic control of gene expression. Mass spectrometry (MS)‐based top‐down proteomics (TDP) is a valuable approach for delineating histone proteoforms because it can provide us with a bird's‐eye view of histone proteoforms carrying diverse combinations of PTMs. Here, we present the first example of coupling capillary zone electrophoresis (CZE), ion mobility spectrometry (IMS), and MS for online multi‐dimensional separations of histone proteoforms. Our CZE‐high‐field asymmetric waveform IMS (FAIMS)‐MS/MS platform identified 366 (ProSight PD) and 602 (TopPIC) histone proteoforms from a commercial calf histone sample using a low microgram amount of histone sample as the starting material. CZE‐FAIMS‐MS/MS improved the number of histone proteoform identifications by about 3 folds compared to CZE‐MS/MS alone (without FAIMS). The results indicate that CZE‐FAIMS‐MS/MS could be a useful tool for comprehensive characterization of histone proteoforms with high sensitivity.

     
    more » « less
  4. null (Ed.)
    Histone post-translational modifications (PTMs) are epigenetic marks that modify the state of chromatin and lead to alterations in gene expression. Advances in mass spectrometry have enabled the high-throughput analysis of histone PTMs without the need for prior knowledge of individual PTMs of interest. In this study, the global histone PTM landscape was analyzed in the gills, kidney, and testes of Mozambique tilapia (Oreochromis mossambicus) through tandem mass spectrometry using data dependent acquisition (DDA-LCMS2) and PTM mapping approaches. PTM assignment to a specific amino acid was validated using A-score and localization probability scores that are based on the detection of diagnostic MSMS ions. These values signify the robustness of PTM assignment to a specific residue within the protein sequence. For PTMs that were represented by both modified and unmodified versions of the corresponding peptide, the stoichiometry was calculated and compared between tissues. We have identified multiple types of histone PTMs and assigned them to specific residues in each tissue. These PTMs include acetylation, methylation, demethylation, trimethylation, phosphorylation/ dehydration, and ubiquitination. Our results indicate that the gills, kidney, and testes each display a unique profile of histone PTMs. These data provide a strong basis for the generation of spectral libraries that enable high-throughput quantitative analyses of histone PTM stoichiometry on a global scale in tilapia exposed to diverse environmental and developmental contexts. 
    more » « less
  5. Syntrophomonas wolfei is an anaerobic syntrophic microbe that degrades short-chain fatty acids to acetate, hydrogen, and/or formate. This thermodynamically unfavorable process proceeds through a series of reactive acyl-Coenzyme A species (RACS). In other prokaryotic and eukaryotic systems, the production of intrinsically reactive metabolites correlates with acyl-lysine modifications, which have been shown to play a significant role in metabolic processes. Analogous studies with syntrophic bacteria, however, are relatively unexplored and we hypothesized that highly abundant acylations could exist in S. wolfei proteins, corresponding to the RACS derived from degrading fatty acids. Here, by mass spectrometry-based proteomics (LC–MS/MS), we characterize and compare acylome profiles of two S. wolfei subspecies grown on different carbon substrates. Because modified S. wolfei proteins are sufficiently abundant to analyze post-translational modifications (PTMs) without antibody enrichment, we could identify types of acylations comprehensively, observing six types (acetyl-, butyryl-, 3- hydroxybutyryl-, crotonyl-, valeryl-, and hexanyl-lysine), two of which have not been reported in any system previously. All of the acyl-PTMs identified correspond directly to RACS in fatty acid degradation pathways. A total of 369 sites of modification were identified on 237 proteins. Structural studies and in vitro acylation assays of a heavily modified enzyme, acetyl-CoA transferase, provided insight on the potential impact of these acyl-protein modifications. The extensive changes in acylation-type, abundance, and modification sites with carbon substrate suggest that protein acylation by RACS may be an important regulator of syntrophy. 
    more » « less