skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Floquet-enhanced spin swaps
Abstract The transfer of information between quantum systems is essential for quantum communication and computation. In quantum computers, high connectivity between qubits can improve the efficiency of algorithms, assist in error correction, and enable high-fidelity readout. However, as with all quantum gates, operations to transfer information between qubits can suffer from errors associated with spurious interactions and disorder between qubits, among other things. Here, we harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins. We use a system of four electron spins, which we configure as two exchange-coupled singlet–triplet qubits. Our approach, which relies on the physics underlying discrete time crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude. Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations and suggest potential uses for non-equilibrium quantum phenomena, like time crystals, in quantum information processing applications. Our results also confirm the long-predicted emergence of effective Ising interactions between exchange-coupled singlet–triplet qubits.  more » « less
Award ID(s):
2003287 1936250 1941673
PAR ID:
10231287
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits. 
    more » « less
  2. Photogenerated spin-correlated radical pairs (SCRPs) in electron donor–bridge–acceptor (D–B–A) molecules can act as molecular qubits and inherently spin qubit pairs. SCRPs can take singlet and triplet spin states, comprising the quantum superposition state. Their synthetic accessibility and well-defined structures, together with their ability to be prepared in an initially pure, entangled spin state and optical addressability, make them one of the promising avenues for advancing quantum information science. Coherence between two spin states and spin selective electron transfer reactions form the foundation of using SCRPs as qubits for sensing. We can exploit the unique sensitivity of the spin dynamics of SCRPs to external magnetic fields for sensing applications including resolution-enhanced imaging, magnetometers, and magnetic switch. Molecular quantum sensors, if realized, can provide new technological developments beyond what is possible with classical counterparts. While the community of spin chemistry has actively investigated magnetic field effects on chemical reactions via SCRPs for several decades, we have not yet fully exploited the synthetic tunability of molecular systems to our advantage. This review offers an introduction to the photogenerated SCRPs-based molecular qubits for quantum sensing, aiming to lay the foundation for researchers new to the field and provide a basic reference for researchers active in the field. We focus on the basic principles necessary to construct molecular qubits based on SCRPs and the examples in quantum sensing explored to date from the perspective of the experimentalist. 
    more » « less
  3. Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications. 
    more » « less
  4. In semiconductor spin qubits which typically interact through short-range exchange coupling, shuttling of spin is a practical way to generate quantum operations between distant qubits. Although the exchange is often tunable through voltages applied to gate electrodes, its minimal value can be significantly large, which hinders the applicability of existing shuttling protocols to such devices, requiring a different approach. In this work, we extend our previous results for double- and triple-dot systems, and describe a method for implementing spin state transfer in long chains of singly occupied quantum dots in a non-adiabatic manner. We make use of Cartan decomposition to break down the interacting problem into simpler problems in a systematic way, and use dynamical invariants to design smooth non-adiabatic pulses that can be implemented in devices with modest control bandwidth. Finally, we discuss the extensibility of our results to directed shuttling of spin states on two-dimensional lattices of quantum dots with fixed coupling. This article is part of the theme issue ‘Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives’. 
    more » « less
  5. Quantum memories play a key role in facilitating tasks within quantum networks and quantum information processing, including secure communications, advanced quantum sensing, and distributed quantum computing. Progress in characterizing large nuclear-spin registers coupled to defect electronic spins has been significant, but selecting memory qubits remains challenging due to the multitude of possible assignments. Numerical simulations for evaluating entangling gate fidelities encounter obstacles, restricting research to small registers, while experimental investigations are time-consuming and often limited to well-understood samples. Here we present an efficient methodology for systematically assessing the controllability of defect systems coupled to nuclear-spin registers. We showcase the approach by investigating the generation of entanglement links between silicon monovacancy or divacancy centers in Si⁢C and randomly selected sets of nuclear spins within the two-species (13⁢C and 29⁢Si) nuclear register. We quantify the performance of entangling gate operations and present the achievable gate fidelities, considering both the size of the register and the presence of unwanted nuclear spins. We find that some control sequences perform better than others depending on the number of target versus bath nuclei. This efficient approach is a guide for both experimental investigation and engineering, facilitating the high-throughput exploration of suitable defect systems for quantum memories. 
    more » « less