We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements [n]={1,...,n} with corresponding data values x1,...,xn. We observe the values for a "sample" set A \subset [n] and wish to estimate some statistic of the values for a "target" set B \subset [n] where B could be the entire set. Crucially, we assume that the sets A and B are drawn according to some known distribution P over pairs of subsets of [n]. A given estimation algorithm is evaluatedmore »
Efficient sampling from the Bingham distribution
We give a algorithm for exact sampling from the Bingham distribution p(x)∝exp(x⊤Ax) on the sphere Sd−1 with expected runtime of poly(d,λmax(A)−λmin(A)). The algorithm is based on rejection sampling, where the proposal distribution is a polynomial approximation of the pdf, and can be sampled from by explicitly evaluating integrals of polynomials over the sphere. Our algorithm gives exact samples, assuming exact computation of an inverse function of a polynomial. This is in contrast with Markov Chain Monte Carlo algorithms, which are not known to enjoy rapid mixing on this problem, and only give approximate samples.
As a direct application, we use this to sample from the posterior distribution of a rank-1 matrix inference problem in polynomial time.
- Publication Date:
- NSF-PAR ID:
- 10231314
- Journal Name:
- ALT
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the fundamental problem of ReLU regression, where the goal is to output the best fitting ReLU with respect to square loss given access to draws from some unknown distribution. We give the first efficient, constant-factor approximation algorithm for this problem assuming the underlying distribution satisfies some weak concentration and anti-concentration conditions (and includes, for example, all log-concave distributions). This solves the main open problem of Goel et al., who proved hardness results for any exact algorithm for ReLU regression (up to an additive ϵ). Using more sophisticated techniques, we can improve our results and obtain a polynomial-time approximationmore »
-
Given two (di)graphs G, H and a cost function c:V(G) x V(H) -> Q_{>= 0} cup {+infty}, in the minimum cost homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f:V(G)-> V(H) (a.k.a H-coloring) that minimizes sum limits_{v in V(G)}c(v,f(v)). The complexity of exact minimization of this problem is well understood [Pavol Hell and Arash Rafiey, 2012], and the class of digraphs H, for which the MinHOM(H) is polynomial time solvable is a small subset of all digraphs. In this paper, we consider the approximation of MinHOM within a constant factor. In terms of digraphs, MinHOM(H) is not approximablemore »
-
Given two (di)graphs G, H and a cost function c:V(G) x V(H) -> Q_{>= 0} cup {+infty}, in the minimum cost homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f:V(G)-> V(H) (a.k.a H-coloring) that minimizes sum limits_{v in V(G)}c(v,f(v)). The complexity of exact minimization of this problem is well understood [Pavol Hell and Arash Rafiey, 2012], and the class of digraphs H, for which the MinHOM(H) is polynomial time solvable is a small subset of all digraphs. In this paper, we consider the approximation of MinHOM within a constant factor. In terms of digraphs, MinHOM(H) is not approximablemore »
-
Given a random n × n symmetric matrix 𝑾 drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form 𝒙^⊤ 𝑾 𝒙 over all vectors 𝒙 in a constraint set 𝒮 ⊂ ℝⁿ. For a certain class of normalized constraint sets we show that, conditional on a certain complexity-theoretic conjecture, no polynomial-time algorithm can certify a better upper bound than the largest eigenvalue of 𝑾. A notable special case included in our results is the hypercube 𝒮 = {±1/√n}ⁿ, which corresponds to the problem of certifyingmore »