skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Spike-and-Slab Posterior Sampling in High Dimensions
Posterior sampling with the spike-and-slab prior [MB88], a popular multimodal distribution used to model uncertainty in variable selection, is considered the theoretical gold standard method for Bayesian sparse linear regression [CPS09, Roc18]. However, designing provable algorithms for performing this sampling task is notoriously challenging. Existing posterior samplers for Bayesian sparse variable selection tasks either require strong assumptions about the signal-to-noise ratio (SNR) [YWJ16], only work when the measurement count grows at least linearly in the dimension [MW24], or rely on heuristic approximations to the posterior. We give the first provable algorithms for spike-and-slab posterior sampling that apply for any SNR, and use a measurement count sublinear in the problem dimension. Concretely, assume we are given a measurement matrix X∈ℝn×d and noisy observations y=Xθ⋆+ξ of a signal θ⋆ drawn from a spike-and-slab prior π with a Gaussian diffuse density and expected sparsity k, where ξ∼(𝟘n,σ2In). We give a polynomial-time high-accuracy sampler for the posterior π(⋅∣X,y), for any SNR σ−1 > 0, as long as n≥k3⋅polylog(d) and X is drawn from a matrix ensemble satisfying the restricted isometry property. We further give a sampler that runs in near-linear time ≈nd in the same setting, as long as n≥k5⋅polylog(d). To demonstrate the flexibility of our framework, we extend our result to spike-and-slab posterior sampling with Laplace diffuse densities, achieving similar guarantees when σ=O(1k) is bounded.  more » « less
Award ID(s):
2505865
PAR ID:
10631359
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2503.02798
Date Published:
ISSN:
2503.02798
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaudhuri, Kamalika and (Ed.)
    Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George & McCulloch (1993). For a dataset with n observations and p covariates, S^3 has order max{n^2 p_t, np} computational cost at iteration t where p_t never exceeds the number of covariates switching spike-and-slab states between iterations t and t-1 of the Markov chain. This improves upon the order n^2 p per-iteration cost of state-of-the-art implementations as, typically, p_t is substantially smaller than p. We apply S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost. 
    more » « less
  2. ABSTRACT We introduce Bilby-MCMC, a Markov chain Monte Carlo sampling algorithm tuned for the analysis of gravitational waves from merging compact objects. Bilby-MCMC provides a parallel-tempered ensemble Metropolis-Hastings sampler with access to a block-updating proposal library including problem-specific and machine learning proposals. We demonstrate that learning proposals can produce over a 10-fold improvement in efficiency by reducing the autocorrelation time. Using a variety of standard and problem-specific tests, we validate the ability of the Bilby-MCMC sampler to produce independent posterior samples and estimate the Bayesian evidence. Compared to the widely used Dynesty nested sampling algorithm, Bilby-MCMC is less efficient in producing independent posterior samples and less accurate in its estimation of the evidence. However, we find that posterior samples drawn from the Bilby-MCMC sampler are more robust: never failing to pass our validation tests. Meanwhile, the Dynesty sampler fails the difficult-to-sample Rosenbrock likelihood test, over constraining the posterior. For CBC problems, this highlights the importance of cross-sampler comparisons to ensure results are robust to sampling error. Finally, Bilby-MCMC can be embarrassingly and asynchronously parallelized making it highly suitable for reducing the analysis wall-time using a High Throughput Computing environment. Bilby-MCMC may be a useful tool for the rapid and robust analysis of gravitational-wave signals during the advanced detector era and we expect it to have utility throughout astrophysics. 
    more » « less
  3. We propose a novel adaptive empirical Bayesian (AEB) method for sparse deep learning, where the sparsity is ensured via a class of self-adaptive spike-and-slab priors. The proposed method works by alternatively sampling from an adaptive hierarchical posterior distribution using stochastic gradient Markov Chain Monte Carlo (MCMC) and smoothly optimizing the hyperparameters using stochastic approximation (SA). We further prove the convergence of the proposed method to the asymptotically correct distribution under mild conditions. Empirical applications of the proposed method lead to the state-of-the-art performance on MNIST and Fashion MNIST with shallow convolutional neural networks (CNN) and the state-of-the-art compression performance on CIFAR10 with Residual Networks. The proposed method also improves resistance to adversarial attacks. 
    more » « less
  4. null (Ed.)
    Stochastic Gradient Langevin Dynamics (SGLD) have been widely used for Bayesian sampling from certain probability distributions, incorporating derivatives of the log-posterior. With the derivative evaluation of the log-posterior distribution, SGLD methods generate samples from the distribution through performing as a thermostats dynamics that traverses over gradient flows of the log-posterior with certainly controllable perturbation. Even when the density is not known, existing solutions still can first learn the kernel density models from the given datasets, then produce new samples using the SGLD over the kernel density derivatives. In this work, instead of exploring new samples from kernel spaces, a novel SGLD sampler, namely, Randomized Measurement Langevin Dynamics (RMLD) is proposed to sample the high-dimensional sparse representations from the spectral domain of a given dataset. Specifically, given a random measurement matrix for sparse coding, RMLD first derives a novel likelihood evaluator of the probability distribution from the loss function of LASSO, then samples from the high-dimensional distribution using stochastic Langevin dynamics with derivatives of the logarithm likelihood and Metropolis–Hastings sampling. In addition, new samples in low-dimensional measuring spaces can be regenerated using the sampled high-dimensional vectors and the measurement matrix. The algorithm analysis shows that RMLD indeed projects a given dataset into a high-dimensional Gaussian distribution with Laplacian prior, then draw new sparse representation from the dataset through performing SGLD over the distribution. Extensive experiments have been conducted to evaluate the proposed algorithm using real-world datasets. The performance comparisons on three real-world applications demonstrate the superior performance of RMLD beyond baseline methods. 
    more » « less
  5. Abstract We study integral points on varieties with infinite étale fundamental groups. More precisely, for a number field $$F$$ and $X/F$ a smooth projective variety, we prove that for any geometrically Galois cover $$\varphi \colon Y \to X$$ of degree at least $$2\dim (X)^{2}$$, there exists an ample line bundle $$\mathscr{L}$$ on $$Y$$ such that for a general member $$D$$ of the complete linear system $$|\mathscr{L}|$$, $$D$$ is geometrically irreducible and any set of $$\varphi (D)$$-integral points on $$X$$ is finite. We apply this result to varieties with infinite étale fundamental group to give new examples of irreducible, ample divisors on varieties for which finiteness of integral points is provable. 
    more » « less