skip to main content


Title: Perceptions and Application of the Ecosystem Services Approach among Pacific Northwest National Forest Managers
The ecosystem services concept has emerged as a guiding principle in natural resource management over the past two decades, and an ecosystem services approach to management is currently mandated as a core element of United States National Forest planning. However, the concept of ecosystem services has been interpreted and operationalized in a variety of ways, leaving a pronounced knowledge gap regarding how it is understood and implemented in different contexts. To better understand the conceptualization and implementation of the concept within United States National Forests, semi-structured interviews with planners and managers of the Pacific Northwest Region were conducted at the region, forest, and ranger district levels, addressing the following topics: (1) how has the ecosystem services concept been perceived by managers and planners?; (2) what are the perceived key ecosystem services offered by National Forest lands?; (3) how has the concept been applied at multiple spatial scales?; and (4) what are perceived challenges or opportunities related to applying the concept in the National Forest context? Results indicate that although participants had a high level of understanding of the ecosystem services concept, there was not a clear, widely adopted approach to considering ecosystem services in management. Through qualitative analysis, three general perspectives arose: one employed the concept to fulfill regulatory requirements at the National Forest scale, a second engaged with ecosystem services to improve participatory planning at the project scale, and a third, business as usual perspective, considered ecosystem services as new language for describing longstanding National Forest priorities. These results draw attention to the challenges of implementing an ecosystem services-based approach in the United States National Forest context and the continued need for the development of management-relevant methods for describing and quantifying ecosystem services.  more » « less
Award ID(s):
1832315
NSF-PAR ID:
10231336
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sustainability
Volume:
13
Issue:
3
ISSN:
2071-1050
Page Range / eLocation ID:
1259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A digital map of the built environment is useful for a range of economic, emergency response, and urban planning exercises such as helping find places in app driven interfaces, helping emergency managers know what locations might be impacted by a flood or fire, and helping city planners proactively identify vulnerabilities and plan for how a city is growing. Since its inception in 2004, OpenStreetMap (OSM) sets the benchmark for open geospatial data and has become a key player in the public, research, and corporate realms. Following the foundations laid by OSM, several open geospatial products describing the built environment have blossomed including the Microsoft USA building footprint layer and the OpenAddress project. Each of these products use different data collection methods ranging from public contributions to artificial intelligence, and if taken together, could provide a comprehensive description of the built environment. Yet, these projects are still siloed, and their variety makes integration and interoperability a major challenge. Here, we document an approach for merging data from these three major open building datasets and outline a workflow that is scalable to the continental United States (CONUS). We show how the results can be structured as a knowledge graph over which machine learning models are built. These models can help propagate and complete unknown quantities that can then be leveraged in disaster management.

     
    more » « less
  2. Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of ‘real-world’ ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how new research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers. 
    more » « less
  3. null (Ed.)
    The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘ Challenger 150 ,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14. 
    more » « less
  4. Abstract Purpose of Review Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. Recent Findings Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Summary Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice. 
    more » « less
  5. Abstract

    This paper develops the concept of flood problem framing to understand decision-makers’ priorities in flood risk management in the Los Angeles Metropolitan Region in California (LA Metro). Problem frames shape an individual’s preferences for particular management strategies and their future behaviors. While flooding is a complex, multifaceted problem, with multiple causes and multiple impacts, a decision-maker is most likely to manage only those dimensions of flooding about which they are aware or concerned. To evaluate flood decision-makers’ primary concerns related to flood exposure, vulnerability, and management in the LA Metro, we draw on focus groups with flood control districts, city planners, nonprofit organizations, and other flood-related decision-makers. We identify numerous concerns, including concerns about specific types of floods (e.g., fluvial vs pluvial) and impacts to diverse infrastructure and communities. Our analyses demonstrate that flood concerns aggregate into three problem frames: one concerned with large fluvial floods exacerbated by climate change and their housing, economic, and infrastructure impacts; one concerned with pluvial nuisance flooding, pollution, and historic underinvestment in communities; and one concerned with coastal and fluvial flooding’s ecosystem impacts. While each individual typically articulated concerns that overlapped with only one problem frame, each problem frame was discussed by numerous organization types, suggesting low barriers to cross-organizational coordination in flood planning and response. This paper also advances our understanding of flood risk perception in a region that does not face frequent large floods.

    Significance Statement

    This paper investigates the primary concerns that planners, flood managers, and other decision-makers have about flooding in Southern California. This is important because the way that decision-makers understand flooding shapes the way that they will plan for and respond to flood events. We find that some decision-makers are primarily concerned with large floods affecting large swaths of infrastructure and housing; others are concerned with frequent, small floods that mobilize pollution in low-income areas; and others are concerned with protecting coastal ecosystems during sea level rise. Our results also highlight key priorities for research and practice, including the need for flexible and accessible flood data and education about how to evacuate.

     
    more » « less