skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A biophysical limit for quorum sensing in biofilms
Bacteria grow on surfaces in complex immobile communities known as biofilms, which are composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often interact with members of their own species and cooperate or compete with members of other species via quorum sensing (QS). QS is a process by which microbes produce, secrete, and subsequently detect small molecules called autoinducers (AIs) to assess their local population density. We explore the competitive advantage of QS through agent-based simulations of a spatial model in which colony expansion via extracellular matrix production provides greater access to a limiting diffusible nutrient. We note a significant difference in results based on whether AI production is constitutive or limited by nutrient availability: If AI production is constitutive, simple QS-based matrix-production strategies can be far superior to any fixed strategy. However, if AI production is limited by nutrient availability, QS-based strategies fail to provide a significant advantage over fixed strategies. To explain this dichotomy, we derive a biophysical limit for the dynamic range of nutrient-limited AI concentrations in biofilms. This range is remarkably small (less than 10-fold) for the realistic case in which a growth-limiting diffusible nutrient is taken up within a narrow active growth layer. This biophysical limit implies that for QS to be most effective in biofilms AI production should be a protected function not directly tied to metabolism.  more » « less
Award ID(s):
1734030
PAR ID:
10231391
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
21
ISSN:
0027-8424
Page Range / eLocation ID:
e2022818118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DeAngelis, Kristen M. (Ed.)
    ABSTRACT Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often “hot spots” for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of Roseobacteraceae representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, Rhodobacterales strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems ( pgaRI and phaRI ) as well as a nonribosomal peptide synthase gene ( igi ) cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine ( pgaR variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. IMPORTANCE Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member Roseobacteraceae community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities. 
    more » « less
  2. O'Toole, George (Ed.)
    ABSTRACT The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm are limited. Here, we identify a nutrient-dependent effect of OprF in static biofilms, whereby Δ oprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa Δ oprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here, we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A Δ oprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective Δ oprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in biofilms. 
    more » « less
  3. Shou, Wenying (Ed.)
    Bacteria sense population density via the cell–cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell–cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in whichVibriocells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically “locked” at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating mutations inmetF(methylenetetrahydrofolate reductase) andluxR(the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants. 
    more » « less
  4. In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms. However, highlighting an area of vulnerability, these pathogens are dependent on the host cell for nutrients and are very sensitive to conditions that limit nutrient availability. Persistence is a common response shared by evolutionarily divergent bacteria to survive adverse conditions like nutrient deprivation. Development of persistence usually compromises successful antibiotic therapy of bacterial infections and is associated with chronic infections and long-term sequelae for the patients. During persistence, obligate intracellular pathogens are viable but not growing inside their host cell. They can survive for a long period of time such that, when the inducing stress is removed, reactivation of their growth cycles resumes. Given their reduced coding capacity, intracellular bacteria have adapted different response mechanisms. This review gives an overview of the strategies used by the obligate intracellular bacteria, where known, which, unlike model organisms such as E. coli , often lack toxin-antitoxin systems and the stringent response that have been linked to a persister phenotype and amino acid starvation states, respectively. 
    more » « less
  5. ABSTRACT Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negative bacteria commonly use N -acyl homoserine lactones (AHLs) as their AIs, and they are detected by LuxR-type receptors. Often, LuxR-type receptors are insoluble when not bound to a cognate AI. In this report, we show that LuxR-type receptors are encoded on phage genomes, and in the cases we tested, the phage LuxR-type receptors bind to and are solubilized specifically by the AHL AI produced by the host bacterium. We do not yet know the viral activities that are controlled by these phage QS receptors; however, our observations, coupled with recent reports, suggest that their occurrence is more widespread than previously appreciated. Using receptor-mediated detection of QS AIs could enable phages to garner information concerning the population density status of their bacterial hosts. We speculate that such information can be exploited by phages to optimize the timing of execution of particular steps in viral infection. IMPORTANCE Bacteria communicate with chemical signal molecules to regulate group behaviors in a process called quorum sensing (QS). In this report, we find that genes encoding receptors for Gram-negative bacterial QS communication molecules are present on genomes of viruses that infect these bacteria. These viruses are called phages. We show that two phage-encoded receptors, like their bacterial counterparts, bind to the communication molecule produced by the host bacterium, suggesting that phages can “listen in” on their bacterial hosts. Interfering with bacterial QS and using phages to kill pathogenic bacteria represent attractive possibilities for development of new antimicrobials to combat pathogens that are resistant to traditional antibiotics. Our findings of interactions between phages and QS bacteria need consideration as new antimicrobial therapies are developed. 
    more » « less