skip to main content

Title: Antarctic Water Tracks: Microbial Community Responses to Variation in Soil Moisture, pH, and Salinity
Ice-free soils in the McMurdo Dry Valleys select for taxa able to cope with challenging environmental conditions, including extreme chemical water activity gradients, freeze-thaw cycling, desiccation, and solar radiation regimes. The low biotic complexity of Dry Valley soils makes them well suited to investigate environmental and spatial influences on bacterial community structure. Water tracks are annually wetted habitats in the cold-arid soils of Antarctica that form briefly each summer with moisture sourced from snow melt, ground ice thaw, and atmospheric deposition via deliquescence and vapor flow into brines. Compared to neighboring arid soils, water tracks are highly saline and relatively moist habitats. They represent a considerable area (∼5–10 km2) of the Dry Valley terrestrial ecosystem, an area that is expected to increase with ongoing climate change. The goal of this study was to determine how variation in the environmental conditions of water tracks influences the composition and diversity of microbial communities. We found significant differences in microbial community composition between on- and off-water track samples, and across two distinct locations. Of the tested environmental variables, soil salinity was the best predictor of community composition, with members of the Bacteroidetes phylum being relatively more abundant at higher salinities and the Actinobacteria phylum showing the opposite pattern. There was also a significant, inverse relationship between salinity and bacterial diversity. Our results suggest water track formation significantly alters dry soil microbial communities, likely influencing subsequent ecosystem functioning. We highlight how Dry Valley water tracks could be a useful model system for understanding the potential habitability of transiently wetted environments found on the surface of Mars.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Zucconi, Laura
Date Published:
Journal Name:
Frontiers in microbiology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semrau, Jeremy D. (Ed.)
    ABSTRACT This study investigated the differences in microbial community abundance, composition, and diversity throughout the depth profiles in soils collected from corn and soybean fields in Iowa (United States) using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial community composition differed due to crop type only in the top 60 cm and due to location only in the top 90 cm. While the relative abundance of most phyla decreased in deep soils, the relative abundance of the phylum Proteobacteria increased and dominated agricultural soils below the depth of 90 cm. Although soil depth was the most important factor shaping microbial communities, edaphic factors, including soil organic matter, soil bulk density, and the length of time that deep soils were saturated with water, were all significant factors explaining the variation in soil microbial community composition. Soil organic matter showed the highest correlation with the exponential decrease in bacterial abundance with depth. A greater understanding of how soil depth influences the diversity and composition of soil microbial communities is vital for guiding sampling approaches in agricultural soils where plant roots extend beyond the upper soil profile. In the long term, a greater knowledge of the influence of depth on microbial communities should contribute to new strategies that enhance the sustainability of soil, which is a precious resource for food security. IMPORTANCE Determining how microbial properties change across different soils and within the soil depth profile will be potentially beneficial to understanding the long-term processes that are involved in the health of agricultural ecosystems. Most literature on soil microbes has been restricted to the easily accessible surface soils. However, deep soils are important in soil formation, carbon sequestration, and providing nutrients and water for plants. In the most productive agricultural systems in the United States where soybean and corn are grown, crop plant roots extend into the deeper regions of soils (>100 cm), but little is known about the taxonomic diversity or the factors that shape deep-soil microbial communities. The findings reported here highlight the importance of soil depth in shaping microbial communities, provide new information about edaphic factors that influence the deep-soil communities, and reveal more detailed information on taxa that exist in deep agricultural soils. 
    more » « less
  2. Abstract

    Spatially overdispersed mounds of fungus‐farming termites (Macrotermitinae) are hotspots of nutrient availability and primary productivity in tropical savannas, creating spatial heterogeneity in communities and ecosystem functions. These termites influence the local availability of nutrients in part by redistributing nutrients across the landscape, but the links between termite ecosystem engineering and the soil microbes that are the metabolic agents of nutrient cycling are little understood. We used DNA metabarcoding of soils fromOdontotermes montanusmounds to examine the influence of termites on soil microbial communities in a semi‐arid Kenyan savanna. We found that bacterial and fungal communities were compositionally distinct in termite‐mound topsoils relative to the surrounding savanna, and that bacterial communities were more diverse on mounds. The higher microbial alpha and beta diversity associated with mounds created striking spatial patterning in microbial community composition, and boosted landscape‐scale microbial richness and diversity. Selected enzyme assays revealed consistent differences in potential enzymatic activity, suggesting links between termite‐induced heterogeneity in microbial community composition and the spatial distribution of ecosystem functions. We conducted a large‐scale field experiment in which we attempted to simulate termites’ effects on microbes by fertilizing mound‐sized patches; this altered both bacterial and fungal communities, but in a different way than natural mounds. Elevated levels of inorganic nitrogen, phosphorus and potassium may help to explain the distinctive fungal communities in termite‐mound soils, but cannot account for the distinctive bacterial communities associated with mounds.

    more » « less
  3. Mackelprang, Rachel (Ed.)
    ABSTRACT The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth. 
    more » « less
  4. Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza–dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments. 
    more » « less
  5. Lurgi, Miguel (Ed.)
    ABSTRACT Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions. 
    more » « less