skip to main content


Title: General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales
Abstract Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.  more » « less
Award ID(s):
1929393 1655499 1831944
NSF-PAR ID:
10231425
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions. 
    more » « less
  2. Abstract

    The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.

     
    more » « less
  3. Abstract

    The plant microbiome can affect host function in many ways and characterizing the ecological factors that shape endophytic (microbes living inside host plant tissues) community diversity is a key step in understanding the impacts of environmental change on these communities. Phylogenetic relatedness among members of a community offers a way of quantifying phylogenetic diversity of a community and can provide insight into the ecological factors that shape endophyte microbiomes. We examined the effects of experimental nutrient addition and herbivory exclusion on the phylogenetic diversity of foliar fungal endophyte communities of the grass speciesAndropogon gerardiiat four sites in the Great Plains of the central USA. Using amplicon sequencing, we characterized the effects of fertilization and herbivory on fungal community phylogenetic diversity at spatial scales that spanned within‐host to between sites across the Great Plains. Despite increasing fungal diversity and richness, at larger spatial scales, fungal microbiomes were composed of taxa showing random phylogenetic associations. Phylogenetic diversity did not differ systematically when summed across increasing spatial scales from a few meters within plots to hundreds of kilometers among sites. We observed substantial shifts in composition across sites, demonstrating distinct but similarly diverse fungal communities were maintained within sites across the region. In contrast, at the scale of within leaves, fungal communities tended to be comprised of closely related taxa regardless of the environment, but there were no shifts in phylogenetic composition among communities. We also found that nutrient addition (fertilization) and herbivory have varying effects at different sites. These results suggest that the direction and magnitude of the outcomes of environmental modifications likely depend on the spatial scale considered, and can also be constrained by regional site differences in microbial diversity and composition.

     
    more » « less
  4. Abstract

    While nitrogen (N) amendment is known to affect the stability of ecological communities, whether this effect is scale‐dependent remains an open question. By conducting a field experiment in a temperate grassland, we found that both plant richness and temporal stability of community biomass increased with spatial scale, but N enrichment reduced richness and stability at the two scales considered. Reduced local‐scale stability under N enrichment arose from N‐induced reduction in population stability, which was partly attributable to the decline in local species richness, as well as reduction in asynchronous local population dynamics across species. Importantly, N enrichment did not alter spatial asynchrony among local communities, which provided similar spatial insurance effects at the larger scale, regardless of N enrichment levels. These results suggest that spatial variability among local communities, in addition to local diversity, may help stabilise ecosystems at larger spatial scales even in the face of anthropogenic environmental changes.

     
    more » « less
  5. Abstract Aim

    Understanding the factors that shape biodiversity over space and time is a central question in ecology. Spatiotemporal environmental variation in resource availability can favor different species, generating beta diversity patterns that increase overall diversity. A key question is the degree to which biotic processes—in particular herbivory—enhance or dampen the effect of environmental variation on resource availability at different scales.

    Location

    We tested this question in a semi‐arid California grassland, which is characterized by high rainfall variability. The system supports giant kangaroo rats (Dipodomys ingens), which form mounds that structure spatial variability in soil nutrient availability.

    Methods

    From 2008 to 2017 we implemented a cattle herbivory exclusion experiment to test whether herbivory moderates the effect of spatial and inter‐annual resource variability on plant biomass and diversity both on and off mounds.

    Results

    Grazing reduced local diversity regardless of mound status or amount of precipitation. However, we found that plant productivity was higher on than off mounds, increased following high rainfall years, and that grazing increased these on‐ versus off‐mound differences in wet years—especially after a major drought. Correspondingly, grazing led to on‐mound communities that were more different from each other and from off‐mound communities.

    Conclusions

    Taken together, our results suggest that herbivory generally enhances habitat heterogeneity across this arid landscape, but is resource context‐dependent with greater effects seen in wetter years.

     
    more » « less