Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon and the conditions under which it may occur using theoretical simulations and empirical data from 20 marine and terrestrial metacommunities. Additionally, given the importance of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species richness is strongly related to stability. Our findings show that metacommunities often exhibit spatial synchrony in species richness. We also found that richness synchrony can be driven by environmental stochasticity and dispersal, two mechanisms of population spatial synchrony. Richness synchrony also depended on community structure, including species evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to richness synchrony than to species richness itself, likely because richness synchrony integrates information about community processes and environmental forcing. Our study highlights a new approach for studying spatiotemporal community dynamics and emphasizes the spatial dimensions of community dynamics and stability.
This content will become publicly available on July 4, 2024
The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.
more » « less- NSF-PAR ID:
- 10432913
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 9
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.more » « less
-
Abstract The diversity of primary producers strongly affects the structure and diversity of species assemblages at other trophic levels. However, limited knowledge exists of how plant diversity effects at small spatial scales propagate to consumer communities at larger spatial scales. We assessed arthropod community β and γ‐diversity in response to experimentally manipulated plant community richness in two long‐term grassland biodiversity experiments (Jena, Germany and Cedar Creek, USA) replicated over two years. We calculated arthropod species turnover among all plot combinations (β‐diversity), and accumulated number of arthropod species occurring on (1) all pairwise plot combinations and (2) 40 randomly selected six‐plot combinations (γ‐diversity). The components of arthropod diversity were tested against two measures of plant diversity, namely average plant α‐diversity () and the average difference in plant α‐diversity between plots (ΔPSR). Whereas points to the overall importance of plant α‐diversity for arthropod community turnover and diversity on a larger scale, ΔPSR represents the role of habitat heterogeneity. We demonstrate that arthropod γ‐diversity is supported by high, homogeneous plant α‐diversity, despite lower arthropod β‐diversity among high‐ compared to low‐diversity plant communities. We also show that, in six‐plot combinations, average plant α‐diversity has a positive influence on arthropod γ‐diversity only when homogeneity in plant α‐diversity is also high. Varying heterogeneity in six‐plot combinations showed that combinations consisting solely of plots with an intermediate level of plant α‐diversity support a higher number of arthropod species compared to combinations that contain a mix of high‐ and low‐diversity plots. In fact, equal levels of arthropod diversity were found for six‐plot combinations with only intermediate or high plant α‐diversity, due to saturating benefits of local and larger‐scale plant diversity for higher trophic levels. Our results, alongside those of recent observational studies, strongly suggest that maintaining high α‐diversity in plant communities is important for conserving multiple components of arthropod diversity. As arthropods carry out a range of essential ecosystem functions, such as pollination and natural pest‐control, our findings provide crucial insight for effective planning of human‐dominated landscapes to maximize both ecological and economic benefits in grassland systems.
-
Abstract Whether cities are more or less diverse than surrounding environments, and the extent to which non‐native species in cities impact regional species pools, remain two fundamental yet unanswered questions in urban ecology. Here we offer a unifying framework for understanding the mechanisms that generate biodiversity patterns across taxonomic groups and spatial scales in urban systems. One commonality between existing frameworks is the collective recognition that species co‐occurrence locally is not simply a function of natural colonization and extinction processes. Instead, it is largely a consequence of human actions that are governed by a myriad of social processes occurring across groups, institutions, and stakeholders. Rather than challenging these frameworks, we expand upon them to explicitly consider how human and non‐human mechanisms interact to control urban biodiversity and influence species composition over space and time. We present a comprehensive theory of the processes that drive biodiversity within cities, between cities and surrounding non‐urbanized areas and across cities, using the general perspective of metacommunity ecology. Armed with this approach, we embrace the fact that humans substantially influence β‐diversity by creating a variety of different habitats in urban areas, and by influencing dispersal processes and rates, and suggest ways how these influences can be accommodated to existing metacommunity paradigms. Since patterns in urban biodiversity have been extensively described at the local or regional scale, we argue that the basic premises of the theory can be validated by studying the β‐diversity across spatial scales within and across urban areas. By explicitly integrating the myriad of processes that drive native and non‐native urban species co‐occurrence, the proposed theory not only helps reconcile contrasting views on whether urban ecosystems are biodiversity hotspots or biodiversity sinks, but also provides a mechanistic understanding to better predict when and why alternative biodiversity patterns might emerge.
-
Abstract Aim To quantify the relative contributions of local community assembly processes versus γ‐diversity to β‐diversity, and to assess how spatial scale and anthropogenic disturbance (
i.e . nutrient enrichment) interact to dictate which driver dominates.Location France and the United States.
Time period 1993–2011.
Major taxa studied Freshwater stream diatoms.
Methods β‐diversity along a nutrient enrichment gradient was examined across multiple spatial scales. β‐diversity was estimated using multi‐site Sørensen dissimilarity. We assessed the relative importance of specialists versus generalists using Friedley coefficient, and the contribution of local community assembly versus γ‐diversity to β‐diversity across spatial scales, with a null model. Finally, we estimated the response of β‐diversity to environmental and spatial factors by testing the correlations between community, environmental and geographical distance matrices with partial Mantel tests.
Results β‐diversity generally increased with spatial scale but the rate of increase depended on nutrient enrichment level. β‐diversity decreased significantly with increasing nutrient enrichment level due to the loss of specialist species. Local assembly was an important driver of β‐diversity especially under low nutrient enrichment. Significant partial Mantel correlations were observed between diatom β‐diversity and pure environmental distances under these conditions, highlighting the role of species sorting in local assembly processes. Conversely, in heavily enriched sites, only spatial distances were significantly correlated with β‐diversity, which indicated a substantial role of dispersal processes.
Main conclusions Nutrient concentration mediated the expected increase in β‐diversity with spatial scales. Across spatial scales, β‐diversity was more influenced by local assembly processes rather than by γ‐diversity. Nutrient enrichment was associated with an overall decline in diatom β‐diversity and a shift in assembly processes from species sorting to dispersal, notably due to the elimination of some specialists and their subsequent replacement by generalists.